FMR67B-AABAEBAFGAJCRDFD3+AK雷达物位计生产厂家
特殊介质测量的定制方案
高温熔体(>400℃)测量采用水冷法兰(流量2m³/h)保护传感器,波导延伸管耐温达800℃。强粘附性介质使用自清洁天线,每秒1次的微振动防止挂料。某沥青储罐应用案例中,带刮刀装置的传感器使维护周期从1周延长至6个月。卫生型设计满足3A标准,Tri-Clamp快装接口表面粗糙度Ra<0.8μm。最新研发的透波窗口材料(如蓝宝石)可测量ε<1.4的超低介电常数介质。
在现代工业生产中,液位测量是一项的任务。无论是石油、化工、食品加工,还是水处理等行业,都需要准确、地测量液位,以确保生产过程的正常运行。而雷达导波液位计,就是为此而生的一种高科技测量设备。
一、雷达导波液位计的工作原理
雷达导波液位计是一种利用微波技术进行液位测量的设备。其工作原理是:通过发射微波信号,当微波信号遇到液面时,会被反射回来。雷达导波液位计接收到反射回来的信号后,通过计算信号的传播时间,就可以准确地计算出液位的高度。
二、雷达导波液位计的特点
1.高精度:雷达导波液位计的测量精度高,误差通常在±2mm以内,甚至可以达到±1mm。
2.非接触测量:雷达导波液位计是通过发射和接收微波信号进行测量的,因此,它不需要与被测液体接触,可以避免因接触液体而产生的腐蚀、污染等问题。
3.适用性强:雷达导波液位计可以应用于各种液体的测量,包括腐蚀性、粘稠性、高温、高压等液体。
4.安装方便:雷达导波液位计的结构简单,安装方便,可以在各种复杂的环境中使用。
三、雷达导波液位计的应用
雷达导波液位计广泛应用于石油、化工、食品加工、水处理等行业。例如,在石油行业,它可以用于测量油罐的液位,以控制石油的开采和运输;在化工行业,它可以用于测量各种化学液体的液位,以化学反应的正常进行;在食品加工行业,它可以用于测量食品加工过程中的各种液体的液位,以食品的质量和;在水处理行业,它可以用于测量水的液位,以控制水处理过程。
总结,雷达导波液位计是一种高精度、非接触、适用性强、安装方便的液位测量设备。它的出现,大地提高了液位测量的准确性和效率,为现代工业生产提供了强大的技术支持。
NIVELCO 导波雷达液位计是测量液位的方法;导波雷达液位计测量不受罐体形状的影响;也不受介电常数、温度、压力与密度的影响;导波雷达液位计的测量长度可以灵活变更,无须标定;测量结果具有高、可重复性、高分辩率;NIVELCO导波雷达液位计的测量范围可达24米,适用的介质温度范围-50℃∽+250℃,适用的压力范围40bar;导波雷达液位计有多种探头类型和材质可供选择;数字化显示可供选择。
导波雷达液位计的技术参数如下:
液体:量程小于15m时,±5m;量程大于15时,测量值5m±0.05%
温度飘移 0.01%/℃
重复性 2m
介质温度-50~250℃
法兰温度-30~200℃/-30~150℃爆型
环境温度-30~60℃/-30~5℃爆型
耐压 40bar
表头显示 LCD可选
标准输出 4~20mA/HART
故障诊断输出 2mA
供电 18~35VDC/小于28VDC爆型
外壳材料铸铝还氧涂层
护等级 NEMA(IP65)
爆 ATEX II 1G 或II 1/2 D T 100℃EEX ia II C T6.。。T3或EEX ia II B T6.。。T3
重量 2Kg(无探头)
雷达是利用电磁波传播过程中折射性和性而研发的一种空间测距电子仪器,初用于国防及航空导航。随着科学技术的推广,雷达逐渐用于工业和民用领域,并衍生出众多型号产品,应用于工业生产中液位测量的雷达液位计就是其中的一类。
雷达液位计测量原理
雷达液位计的测量原理和军工中的雷达一样,都是通过电磁波的直线传播特性测量周围空间的净空距离,即被测物体距离雷达的直线空间距离,具体到工业生产中就是液体的液面到雷达天线的空高。通过对雷达液位计组态可设定雷达天线到容器底部的垂直距离,根据已经测得的液面空高就可计算出液体的液位高度。
测量原理公式为H=L-CT/2
C为电磁波的波速即光速, T为电磁波从发射到接收所用到的时间,L为雷达天线距离容器的低端的垂直高度,H为被测液体的高度。
工业中的液位检测不同于军工航空动辄几十上百千米的空间测距,生产中的液位检测距离都较小,高范围的储罐液位检测也就一二十米的垂直高度,这样的距离空间相对于光速传播的电磁波来说可以忽略不计,于是上述的测量方式很难实现,因为人类无法制造出不用时间的电路处理仪表。
为使雷达测距应用于工业中的液位检测,生产厂商使用了高频的无线电波,使用线性调频连续测距的方法,让天线发射的电磁波的频率随着时间进行改变,接收器接收到的反射电磁波频率与此时的天线发射频率是不同的,通过计算两者的频率差,换算得出电磁波在空间传播的时间,从而能够计算出被测液位的高度。雷达液位计的构造
不同厂商所生产的雷达液位计形式各异,但总体的部件大体是一致的,其主要包括电路部分(雷达波发生器、信号检测、信号处理),天线及接收器和安装附件表体三大部分。根据天线的不同,雷达液位计可分为导波雷达和普通雷达两大类型。
导波雷达液位计
导波雷达是在电磁波发射器的下方安装了一个金属导波体,让高频的无线电波沿着金属体垂直向下传播,当电磁波碰到被测物质的液面时,电磁波会在接触面反射,沿着波导体垂直的返回到雷达液位计天线内部的接收器中,然后处理电路进行分析计算,得出被测液体的液面高度。根据金属导波体的不同,导波雷达又分为缆式和杆式两大类。
缆式导波雷达的导波体为一个柔性的不锈钢金属绳,其末端栓一金属重物,以金属绳在被测液体中垂直的伸入到容器底部,金属绳在使用中漂浮摆动而弯曲。这样结构的雷达液位计主要用于底下罐、零位罐等地面以下的液位测量中。
杆式导波雷达的波导体根据导波杆及天线的不同又分为很多种,有金属杆式的导波雷达,有通过金属管的喇叭天线式的导波雷达,有带有旁通测量筒的导波雷达。这些导波雷达主要用于高出地面的储罐液位测量或生产设备塔器储罐可以侧装旁通管的液位测量。 西安赛谱自动化仪表技术有限公司
普通雷达液位计
普通雷达液位计的天线,只是一个电磁波的发射接受装置,其电磁波发射后通过气相自由传播,由于雷达液位计电磁波为高频的微波信号发散传播性差,而且被测液体距离雷达液位计的高度小,其电磁波传播过程可看成垂直传播,因此这种雷达液位计满足液位测距要求。相对于导波雷达少了导波体节省费用方便安装,在储罐等较高液位测量中得到大量的应用。
根据天线的不同生产厂商制作了不同型号的雷达液位计,以适应不同工况环境。厂里使用的普通雷达液位计的天线有喇叭口、水滴形(防液体挥发凝结)、偏心型(防多重反射电磁波干扰)、宽口喇叭口(防气相介质衰减电磁波)四种类型。
电路处理部分
根据 雷达液位计处理电路的复杂程度,雷达液位计分为单路测量的普通模式和多重处理信号的总线模式。多重信号处理不仅能处理雷达电磁波测距的液位信号也可处理热电阻的温度测量信号,并可通过总线的方式把多台雷达液位计连接起来,通过一根总线远传到控制室内。适用于储罐众多布分散的大中型储罐系统的液位测量,节约了传输线缆的铺设和费用。
雷达液位计故障分析及处理
雷达液位计从测量原理上看是一种高精度的测距仪表,雷达液位计制造厂商也大肆介绍雷达液位计的优点,如可用于工艺过程中挥发性气体、高温、高压、蒸汽、真空及高粉尘等恶劣环境的要求,可对不同料位进行连续测量,但实际使用中雷达液位计常出现很多问题甚至失灵无法使用。
雷达液位计电磁波选取依据
由雷达液位计的测量原理可见,雷达液位计测量过程中的核心是电磁波传播过程中频率波的改变范围,因此天线所接受的雷达波的频率,是液位测量的关键依据。
雷达液位计在使用中天线到被测液体的液面的空间净空中,充斥着各种频率的电磁波,这些电磁波大部分都会通过各种反射、折射传播到天线内部的接收器中,因此雷达液位计的接收器接收到的电磁波是一系列的大量的不同频率的电磁波。
怎样从这杂乱的电磁波中选出真实的液面反射来的电磁波,是雷达液位计能否准确测量液位的关键,这就需要一个选频电路。选频电路选择的依据是根据接受到的电磁波的能量来进行衡量。
电磁波在传播过程中受气相介质,被测介质的反射折射,金属容器壁等物质的碰撞吸收,能量会不断减弱,反射的次数越多能量损失越大,经过的距离越长能量损失越大。由于电磁波是垂直于被测液体的液面发射,其电磁波在被测液面的反射率大(折射率小),可近似为全反射,其在被测液体液面的能量损失,是电磁波回波损失小的。垂直于被测液面的空间距离是电磁波传播中短的距离,这个反射的电磁波在气相空间传播中能量损失也是小的,由此两点被测液位反射回来的电磁波的能量是电磁波频谱中大的,由此雷达液位计的选频电路得出被测液体的空高,从而计算得出被测液体的高度
雷达液位计使用中的问题
雷达液位计电磁波选频可以知道,返回接收器的电磁波的能量大小是雷达液位计选用电磁波频率的依据,从而决定着雷达液位计测量的准确性。如果正常使用中,被测液体所反射的电磁波的能量不是高的电磁波,那么雷达液位计就会选用其他的不真实的电磁波频谱,此时就会造成被测液位失真。
造成这种现象的原因,大体可以归为以下几点:
一、被测液体与雷达天线之间的净空中有较大面积的反射物,致使电磁波在到达液面之前被反射。造成这种现象的原因主要为:
1、被测容器内部有搅拌器、加热盘管、管线等金属物体,如果这些金属体裸露在被测液体的外部,而且正处于电磁波垂直传播的方向,如搅拌机旋转中的浆液转动,就会造成电磁波被提前反射回来,而造成被测液位偏高。
2、雷达液位计安装地点距离容器壁太近或不垂直与被测液面,使电磁波在传播中照射到容器内壁而提前反射回来;电磁波在被测液面反射过程中没有原路返回(斜射时),致使雷达液位计检测不到反射电磁波;液面反射的电磁波经多重反射能量损失过多,而没有被选频电路选中,以上多种情况造成雷达液位计测量失真。
二、波导体(绳缆、杆)上有挂料,电磁波沿着波导体传播中,在没有到达液面前遇到波导体上面的挂料而反射回来,产生虚假液位。安装的波导管不垂直与雷达液位计,造成电磁波斜射到波导管的内壁,而产生如同容器内壁一样的反射或多重反射而使测量失真。
三、被测液体与雷达天线之间的净空中,气相介质蒸汽浓度太大,致使电磁波在空间传播中,能量损失太大,甚至反射波根本到达不了雷达液位计的接收器。
被测液体有加热要求,上部安装搅拌机的情况下尤其严重,由于被测液体在加热搅拌中不断有蒸汽挥发,会造成液面以上的空间中充满了高浓度的介质蒸汽,其微小的液体颗粒不仅对电磁波产生漫反射而且会吸收大量的电磁波能量,使电磁波出现很大衰减,造成雷达天线无法接受回波信号。
被测液体中含有水份时,挥发的水蒸气对于电磁波的吸能更加严重。由于水汽具有易冷凝的特性,气相空间含有的水汽在罐顶罐壁附近会逐渐冷凝,积聚在一起形成较大的水汽滴,充斥在液位上方的空间里,对于电磁波具有强烈的吸能作用,致使电磁波的能量衰减过大无法到达雷达接收器,造成雷达液位计彻底失去工作能力。
四、雷达液位计天线附着赃物,致使电磁波刚刚发射出就被反射回来,甚至根本发射不出去。这样的状况即使使用防凝结的水滴形天线,也无法避免雷达液位计的突然失灵。
雷达液位计天线附着赃物是被测介质挥发的升级加重,被测液体净空中大量充斥着气相蒸汽,其会附着在雷达液位计的天线上,是易冷凝的高粘介质,雷达液位计安装在储罐顶部温度较低,挥发的介质蒸汽易在雷达天线上凝析附着,造成电磁波发射困难,情况严重时介质甚至在天线上结焦,损坏天线。
同样被测介质含有水份时,水汽易在天线上附着,致使电磁波发射不出去,使雷达液位计彻底失灵。
五、雷达液位计电路中的保护措施。雷达液位计是一种高科技的测量仪表价格昂贵,处于对仪表本身防护的需要,制造厂商普遍在电路中设置了很多保护措施,如超温保护、低电压保护,高液位保护,运行故障保护以及数据保持,错误锁定等液位检测防护措施。这些防护措施在日常使用中,如果雷达液位计出现问题,保护就会动作,造成雷达液位计停止工作,此时需要查找故障原因,清除恢复后雷达液位计才能正常使用。防护功能随厂商不同而设置,集成度高的防护措施多。如总线式的多功能雷达液位计,其本身的防护措施就多,日常维护要熟悉。
FMR67B-AABAEBAFGAJCRDFD3+AK雷达物位计生产厂家
产品概述
杆式导波雷达液位计是使用非接触式高频雷达液位测量仪表,便捷的安装方式和标准的通信接口4~20mA(HART)、RS-485与PLC、DCS通讯该产品还具有防爆和本安两种形式,可广泛适用石油,化工,食品,水处理等行业的液位、料位的连续测量。
产品特点
○适合多种场合的液位料位测量;
○防爆和本安设计可广泛用在石油化工领域;
○杆式导波雷达液位计采用了高达26GHz的发射频率,雷达液位计可以应用于各种复杂工况;
○4~20mA(HART)标准信号、RS485支持Modbus RTU通讯接口,可实现数据的远距离传输;
○体积小、重量轻、结构精巧、安装便捷;
○精度高、*稳定性好、无维护工作量;
○防潮、防尘、防雷击、防射频干扰;
○模块化设计;
○本安型仪表可在不停电的情况不开壳调校测试;
○测试与标定无需介质;
○非接触式测量,无机械磨损,使用寿命长;
○可配套显示仪,实现罐下显示。
技术参数
外形尺寸
安装示意
安装要求:一般采用标准法兰安装到罐顶,也可采用旁通管安装,导波管安装等多种方式。高频雷达放置在罐体直径的1/4或1/6处,距罐壁不小于200mm,26G天线伸入到罐里至少10mm;测量锥形罐体,应安装在锥形罐体平面的中间,可以测量到锥形顶部;测量有堆料的罐体,法兰选型应选择万向法兰(可调节方向)。
注意事项:液位计不能安装在进出料口处,拱形、圆形罐不要将仪表安装在顶部中心,避免多次强波反射;避免安装在有很强涡流的地方。如有搅拌或很强的化学反应等,建议采用导波管或旁通管安装方式;导波管安装时要注意内壁一定要光滑,下面开口的导波管达到需要的底部液位。
配置表
电气连接
导波雷达液位计工作原理
导波雷达液位计是一种非接触式的液位测量仪表,广泛应用于石油、化工、电力、冶金、等行业的储罐、槽罐等容器的液位测量。本文将详细介绍导波雷达液位计的工作原理。
一、导波雷达液位计的组成
导波雷达液位计主要由以下几个部分组成:
1. 发射器:负责产生高频微波信号,通过天线发射出去。
2. 接收器:接收从被测容器底部反射回来的微波信号。
3. 处理器:对接收到的信号进行处理,计算出液位高度。
4. 显示器:显示处理后的液位高度。
5. 天线:连接发射器和接收器,传输微波信号。
6. 传感器:用于检测微波信号的强度,从而判断液位高度。
二、导波雷达液位计的工作原理
导波雷达液位计的工作原理主要基于微波的传播特性和回波原理。具体来说,当微波信号从发射器发出后,会沿着空气或管道传播到被测容器底部。在被测容器底部,微波信号会遇到被测液体的表面,部分微波信号会被反射回来。接收器接收到这些反射回来的信号后,将其传输给处理器进行分析处理。
三、导波雷达液位计的工作过程
1. 发射微波信号:发射器产生一定频率的微波信号,通过天线发射出去。
2. 传播与反射:微波信号在空气中或管道中传播,遇到被测容器底部时,部分信号会被反射回来。
3. 接收反射信号:接收器接收到从被测容器底部反射回来的微波信号。
4. 分析处理:处理器对接收到的信号进行分析处理,计算出液位高度。
5. 显示结果:显示器显示处理后的液位高度。
四、导波雷达液位计的优点
1. 非接触式测量:导波雷达液位计不需要与被测容器直接接触,避免了传统测量方法中的污染和磨损问题。
2. 高精度测量:导波雷达液位计具有较高的测量精度,能够满足各种工况下的需求。
3. 抗干扰能力强:导波雷达液位计具有较强的抗干扰能力,能够在复杂环境下稳定工作。
4. 易于安装和维护:导波雷达液位计结构简单,安装和维护方便,降低了使用成本。
总之,导波雷达液位计凭借其非接触式测量、高精度、抗干扰能力和易安装维护等优点,在各行业得到了广泛的应用。了解其工作原理有助于我们地应用和维护这种的测量设备。
FMR67B-AABAEBAFGAJCRDFD3+AK雷达物位计生产厂家
进入炼油厂的原油虽然在之前的开采、集输过程中已经经过多次脱水,但仍有0.3%的含水量,因此炼油厂储运车间罐区的日常工作中,原油脱水仍是一项重要工作,而油水界位的准确测量则是原油充分脱水的关键。
现场工艺和工况介绍
本案例的现场是3座300m³的立式沉降罐,高度8900mm,操作温度为20~50℃,常压。原油储罐中经一次脱水后的含油污水输送到这3座立式沉降罐进行二次脱水。含油污水需在沉降罐静止24小时,依靠自然沉降机理将介质中的油水进行分离。,根据油水界位的指示,完成充分脱水后的原油被再次输送回原油储罐。
在沉降罐二次脱水的整个生产过程中,如果油层和乳化层厚,会造成导波雷达液位计信号大幅衰减。另外,由于冬季罐内外温差大,还会导致天线上形成结露、甚至结霜。因此,该工况对导波雷达的油水界位测量提出了很高的挑战。
原油储罐排水除油操作画面
VEGA解决方案
客户根据现场工况综合考量后,决定使用VEGAFLEX 81导波雷达液位计来进行测量:配置2mm缆式天线,方便运输,并通过底部配重或固定的方式减轻天线摆动,适合大中型储罐和料流冲击较大的工况;测量精度高,仅为±2mm;具有两路4...20mA电流输出,可同时输出液位和界位信号。
VEGAFLEX 81导波雷达
同时,现场配备了VEGADIS 81罐旁显示仪,方便巡检和维护。该显示仪操作界面友好,设置简单,还可以显示清晰的回波曲线。
VEGADIS 81罐旁显示仪
功能强大的VEGA导波雷达液位计
01 信号强劲,电磁波在传输过程中要克服天线结露或结霜、原油层、乳化层等多个因素的影响,但VEGAFLEX 81由于信号强劲,可以保持液位和界位信号稳定、。
02 导波雷达VEGAFLEX 81基于脉冲波的测量原理,因此不受测量介质密度变化的影响。
03 导波雷达VEGAFLEX 81无需带料调试,调试简单。
04 多种信号输出方式,可以提供两路4...20mA电流信号,一台表可以同时测量和输出液位和界位信号。
05 每次液位放空后,导波雷达自动开启虚假信号抑制功能,减少粘附对测量的影响。
使用效果
通过与工艺生产部门的密切沟通,操作人员配合我们完成液位和界位的标定,使导波雷达的性能与现场工况结合。
如上图所示,VEGAFLEX 81液位和界位信号清晰,测量准确,而且自2021年投运以来,运行一直稳定、,了客户的信任和赞许。
导波雷达液位计是依据时域反射原理(TDR)为基础的雷达液位计,采用高频振荡器作为电磁脉冲发生体,发射电磁脉冲,沿导波缆或导波杆向下传播,当遇到被测介质表面时,雷达液位计的部分电磁脉冲被反射回来,形成回波。并沿相同路径返回到脉冲发射装置,通过测量发射波与反射波的运行时间,经 t=2d/c 公式,计算得出液位高度。
根据图(a)所示,导波雷达液位计发射电磁脉冲时,在通过导波缆顶部的时候,由于距发射端较近,会产生一个虚假回波,可通过滤除虚假回波,来消除干扰。电磁脉冲沿导波缆向下传播时,当信号到达被测介质表面时,回波一部分会被反射,并在回波曲线上产生一个阶跃性变化。另外一部分信号仍然会继续向下传播,直到损耗在不断发射中。液位计通过检测出液位回波和顶部发射回波之间的时间差,根据这个时间差,经过智能化信号处理器,进行计算就可以得到液位的高度。
从图(b)可以看出,在空罐的时候,没有液位就不会检测到液位回波信号,但是顶部虚假回波同样会存在,电磁脉冲传输到导波缆的底部,罐底会产生一个回波。假如罐体内有两种不相溶的介质,由于密度不同,两种介质会分为上下两层。如果且这两种介质的介电常数相差大,那么就可以通过回波信号的不同来判断两种介质的界面,进而计算出两种介质的高度以及界面的高度。由于电磁脉冲是通过导波缆向下传播,信号衰减比较小,因而可以测量低介电常数的介质。一般情况下被测介质的相对介电常数越大,反射回来的脉冲信号就越强。也就更容易区分出虚假回波。更容易得到真实液位。比如水比甲醇更容易测量。
介质的相对介电常数是表征介质化的一个物理量,它是由介质本身的属性决定的。因此,介质不同,相对介电常数也不同。被测介质的介电常数大小直接影响高频脉冲信号的反射率。当电磁脉冲到达介质表面时,电磁波会发生反射和折射。相对介电常数越大,则反射的损耗越小,相反相对介电常数越小,则发射的损耗越大,信号衰减的越严重。当被测介质的电导率大于10mS/cm,则会反射回来,即回波信号越强。由于过小的相对介电常数会导致信号度衰减。因而每一种导波雷达液位计都具有一项小相对介电常数,确保雷达液位计能够正常使用。不同公司的导波雷达液位计在结构设计上不同,对小相对介电常数的要求也不同。