SYRD933调频雷达物位计厂
智能诊断与预测性维护功能
现代传感器集成自诊断系统,实时监测天线污染、电子元件老化等状态。信号质量指数(SQI)低于70%时触发维护警报,某粮油企业应用后故障停机减少60%。温度漂移补偿算法使长期稳定性达0.01%/年。最新边缘计算功能可在本地完成95%的数据处理,仅上传关键参数降低带宽需求。通过分析历史回波曲线变化趋势,能提前2周预测介质特性改变导致的测量偏差。
目前,海上平台常用的液位测量仪表主要有导波雷达液位计、喇叭口雷达液位计等几种测量方法。每种测量方法价格差异较大,且都有一定的适用范围和条件。其中一些仪表虽然本身适用粘度范围有限,但是经过处理或者设计后,也可以获得更广泛的适用粘度范围,从而避免了选择价格更高的测量仪表。通过对海上平台常用液位测量仪表进行详细研究,通过合理化选型,一方面实现了佳的测量效果,另一方面有效地减少了工程投资。
1、导波雷达液位计
导波雷达也称时域反射或微功率脉冲雷达,安装在储罐或旁通管的顶部,有杆式和缆式两种形式,考虑到受罐顶安装空间的限制,海洋平台一般选用导波缆配重锤的形式。低能脉冲微波以光速沿导波杆/缆向下发送,在导波杆/缆与液位(空气/液体界面)的交点处,有相当大比例的微波能量通过导波杆/缆反射回变送器,变送器对发射信号和接收的回波信号之间的时间差进行测量,然后板载微处理器利用公式:距离=(光速×时间差)/2,即可实现对液面上方高度进行计算,从而得出罐内液位值。
导波雷达液位计通过在导波杆/缆上进行涂层处理,通过软件滤除油膜覆盖造成的干扰的方式,部分产品可以实现8000cp及以内粘度范围总液位的测量。在粘度较大工况下,不建议使用导波管进行限位。
优点:对波动较大介质的测量更稳定,不受介电常数高低的限制,信号相对稳定。
缺点:安装维护不太方便,有时需要在罐体加装导波管。
2、喇叭口雷达液位计
喇叭口雷达液位计是利用超高频电磁波经天线向被探测容器的液面照射,当电磁波碰到液面后反射回来,仪表检测出发射波及回波的时差,从而计算出液面高度。由于喇叭口雷达天线与被测介质互不接触,所以可以有效避免高粘工况对测量的影响,理论上不受介质粘度的影响。
优点:精度较高,采用非接触式测量,不受介质粘度的限制,体积较小,安装方便。
缺点:天线容易沾上测量介质、结晶或水蒸气,需要进行定期检查和清理。为避免漂浮物影响测量结果,需要在罐体加装导波管。
导波雷达液位计是一种常见的工业测量仪器,主要用于液体和固体物料的液位监测。它通过导波雷达技术,利用电磁波在介质中的传播特性,实现对液位的测量。这种技术在各种行业中得到广泛应用,比如石油、化工、水处理、食品和饮料等领域。
导波雷达液位计的工作原理基于电磁波的传播。其核心部件是一个发射器和接收器,发射器将高频电磁波发射到测量介质中。当电磁波遇到液体或固体物料时,会产生反射,接收器则接收到这些反射波。通过分析反射波的时间和特性,仪器可以计算出液位的高度。
与传统液位计相比,导波雷达液位计具有多项优势。首先,它对测量环境的适应性强。传统液位计可能受到压力、温度、蒸汽、泡沫等因素的影响,而导波雷达液位计则不易受到这些因素的干扰。这使得它在一些恶劣环境下仍能保持良好的测量精度。
其次,导波雷达液位计的安装和维护相对简单。由于其非接触式的测量方式,用户无需担心测量探头与介质直接接触带来的污染或磨损问题。此外,导波雷达液位计的性高,能够长时间稳定工作,减少了维护频率和成本。
导波雷达液位计的应用领域广泛。首先,在石油和化工行业,液位监测是和生产管理的重要环节。导波雷达液位计能够实时提供液位数据,帮助企业避免因液位异常造成的隐患。同时,它也能提高生产效率,确保原料的及时供应。
在水处理行业,导波雷达液位计用于监测污水和废水处理过程中的液位变化,确保处理过程的顺利进行。通过对液位的控制,企业可以实现更的水资源管理,降低运营成本。
此外,在食品和饮料行业,液位测量同样。导波雷达液位计能够在不影响产品质量的情况下,提供的液位数据,帮助企业实现自动化生产和监控。
在选择导波雷达液位计时,有几个关键因素需要考虑。首先是测量范围和精度。不同的应用场景对液位计的要求不同,用户应根据实际需求选择合适的型号。其次是介质特性。液位计的性能可能受到测量介质的性质(如导电性、介电常数等)影响,因此在选型时要充分考虑这些因素。
另外,安装位置和环境条件也是影响液位计性能的重要因素。应选择合适的安装位置,以避免干扰信号的影响。同时,确保仪器能够适应周围环境的温度、压力等条件。
在使用导波雷达液位计时,用户也应定期进行校准和维护,以确保其测量的准确性和性。虽然导波雷达液位计的维护频率相对较低,但定期检查仍然是必要的,以因长时间使用而导致的性能下降。
总之,导波雷达液位计凭借其优良的测量性能和广泛的适用性,成为各行各业液位监测的重要工具。随着科技的发展和应用需求的增长,导波雷达液位计的技术也在不断进步,未来有望在更多领域发挥更大的作用。企业在选择和使用导波雷达液位计时,应充分了解其工作原理和适用范围,以便地满足生产和管理的需求。通过合理的使用和维护,导波雷达液位计将为企业提供的数据支持,助力其运营。
SYRD933调频雷达物位计厂
智能诊断与预测性维护功能
现代传感器集成自诊断系统,实时监测天线污染、电子元件老化等状态。信号质量指数(SQI)低于70%时触发维护警报,某粮油企业应用后故障停机减少60%。温度漂移补偿算法使长期稳定性达0.01%/年。边缘计算功能可在本地完成95%的数据处理,仅上传关键参数降低带宽需求。通过分析历史回波曲线变化趋势,能提前2周预测介质特性改变导致的测量偏差。
雷达物位计厂家
DHE-4100原理
原理:由导波杆向下引导微波脉冲到达物料表面后,部分信号被反射回来,通过测量信号发射到接收的时间差得出物位高度。适用于:
<小量程储罐,几何形状和内部有障碍物的复杂储罐。
<带有蒸汽,附着物,起泡,冷凝水的应用场合。
DHE-4100雷达物位计产品特点
■稳定
近三十年行业积累,采用定华电子*的“微振动分析”回波处理技术,智能回波识别技术,确保物位总能得到、、有效的跟踪和检测。
■调试简单
仪表显示屏上可以直观看到测量波形,通过波形可以轻松判断仪表的工作状态。
■应用广泛
多种天线形式可供选择,适用于各种不同的特性介质,不受介质的密度、粘度、电导率、湍流、粉尘、腐蚀性等的影响。
■连接方便
多种过程连接方式选择,将泄露风险减至低。
化工行业
化工行业对物位测量技术的要求很高。雷达物位计具有高精度、大量程、高稳定性、调试操作简便等技术特点,决定了其在化工行业比其他测量手段更具有显著优势。
过程罐
反应过程罐的液位测量一直是个难点,而化工行业存在很多的反应过程罐。由于反应过程罐里多数有搅拌、伴热等设备,导致很多仪表无法正常工作。非接触式平板雷达物位计可以不受搅拌、伴热这些因素的影响进行稳定测量。
卧罐
化工行业的卧罐多为直径1~4米左右。介质多为腐蚀性强、易燃易爆等危险介质。其量程较小,采用接触式雷达(导波)物位计 ;而非接触式雷达物位计 采用四氟防腐技术,测量强腐蚀性介质效果更佳。
球罐
球罐在化工行业常见,直径多数大于10米。常用来储存带压、腐蚀性强、易燃易爆等危险介质。由于量程较大,多采用非接触式雷达物位计测量物位,其量程大可达到30米,精度可达到±5mm。
立罐
立罐在化工行业常用来储存常压介质,其量程较大,多为10~30米,且多有内浮顶,选型时需考虑是否增加导波管。罐体加装导波管的采用接触式雷达(导波)物位计 ,无导波管的工况采用非接触式雷达物位计。
石化行业
石化行业测量不同过程步骤的物位高度,对仪表的性要求很高。雷达物位计适用于测量石化行业中的碳氢化合物和油品,因为其可以在不受温度、压力、密度等影响的情况下测量物位高度,可以满足大容量,不同尺寸的容器的测量要求。
过程罐
石化行业的不同过程设备中,会将可回收利用的干净冷凝液收集到储罐里。这些冷凝液是在用于加热不同的碳氢化合物过程的蒸汽系统中产生的。 在冷凝液罐里,通常会达到很高的过程温度,采用高温型的非接触式平板雷达,可以准确的测量其物位高度。
卧罐
石化行业有大量的卧式储罐,量程2~4米。 要确保能地完成炼油过程,关键在于要能测得储罐内的物位,以便在需要时能提供各种相应的介质。接触式和非接触式雷达物位计均可用在此工况上使用。接触式雷达(导波)物位计 ;非接触式雷达物位 计精度更高,更适合测量有防腐要求的介质及会产生附着物的介质。
球罐
石化行业中,球罐多数都是用于存储碳氢化合物,其量程多数大于10米。以常见的丙烷为例,丙烷属于液化气 (LPG),常温下是一种无的易燃气体。丙烷经压缩、液化后被存入高压容器中,以免其重新气化。非接触式雷达物位计 可以准确的测量它的液位高度。
立罐
石化行业中,立罐主要用来存储成品油,其量程较大,10~30米。如成品汽、柴油,就常储存于立罐中。其常温常压,用非接触式雷达物位计 可以准确的测量液位高度。
制
医行业设备通常体积更小,被测介质价值相对较大,卫生等级要求相对较高,雷达物位计适合于小型反应器和灌装设备的物位测量。
过程罐
品生产过程中缓冲罐常见,缓冲罐内的介质经常会有一些混合、反应过程,所以罐内多有搅拌或液下泵。多采用非接触式平板雷达物位计,平板天线信号强,不怕介质飞溅、粘附,适合测量带搅拌的工况。
卧罐
在医生产中,常用的溶剂和反应介质多数在卧罐中储存,其量程一般都在2~3米。对于卫生要求高的采用非接触式雷达物位计 测量。对于卫生要求不高的采用接触式雷达(导波)物位计 。
食品
我们每天食用的一切液态或糊状食品都被仓储在不同规格的容器中,并在其中得到混合和加工。尤其是在带有搅拌装置的小型容器中,常常会出现严重的冷凝现象或者在传感器上形成附着物。而雷达物位计不受介质附着物和冷凝物的影响,可以*食品行业的使用要求。
过程罐
在食品加工工艺中,会经常出现过程罐。食品在过程罐中搅拌、加热、转换。对于带搅拌的罐体多采用非接触式平板雷达物位计。由于搅拌的存在,可能会出现介质飞溅,造成附着物黏在天线上。而平板雷达的天线小、信号大,*不受附着物的影响。
卧罐
在食品行业中,大多数的液态食品(饮品)都储存在卧罐中,多数的液态食品(饮品)在酿造过程中,罐中总是存在一层厚厚的泡沫(比如啤酒和牛奶)。非接触式平板雷达物位计 的信号大、穿透力强,通常使用它来测量这种液态食品储罐的液位高度。
料仓
粮仓是食品行业常见的储罐。装填筒仓会产生大量灰尘,粮食属于固体颗粒,故采用固体雷达物位计 。固体雷达物位计信号更强,可穿透灰尘测量物料。
采矿
采矿行业中,固体料仓中石料及各种灰库中的料灰物位高度,均可通过雷达物位计进行测量。矿物状态可分为粉尘状、颗粒状和块状。其介电常数通常比较小,固体雷达物位计的电路部分专门增加了信号放大器,增强雷达回波信号,了雷达物位计在固体物位测量时的稳定性和精度。
过程罐
采矿行业中过程罐主要用于矿物的混合再加工。以铝土矿为例,铝土矿首先与氢氧化钠混合,蒸压和搅拌。然后将其送入煅烧炉,在那里脱水成白细粉-氧化铝。非接触式固体雷达物位计 可以准确测量该罐中的物位,确保工艺的良好运行。
料仓
筒仓是存储固体矿物的主要容器,采出的矿石通过输送系统输送到大型的地上或地下筒仓,并储存在那里直到用于生产。需要的测量来确定筒仓的物位。非接触式固体雷达物位计 是这种工况的好的测量仪表。
水泥
在水泥窑中利用雷达物位计技术,通过建立动态预测模型,实现熟料生产全寿命的完整视图。监测和控制生产大大提高窑的稳定性,提高生产效率,减少材料损失及能源成本。
过程罐
水泥粉料在回转窑中燃烧之前,来自混合床和集料的物料在大型磨机中被磨成细生料,然后粉末材料通过气动输送系统输送到筒仓。的水平监测对于优化原材料储存。非接触式固体雷达物位计 *可以满足此工况的要求。
料仓
水泥厂的原料大多是颗粒状物料,少数是块料,其半成品熟料也是颗粒状物料,储存在库或仓里。这种工况对物位仪表的天线结构要求比较,例如:大量程、高温、度粉尘,还需要考虑现场冷凝、积料、搅拌器等影响造成的伪回波现象。建议采用非接触式雷达物位计 来测量物位。
水处理
水处理行业的液位测量主要包括集水井、粗格栅、细格栅、生化反应池、冲泥池、污泥池、井溶池。其中除了集水井等超远量程、狭长空间外,其他环境比较简单。雷达物位计在以上场合均可以稳定工作,测量。
料仓
利用地下水泵将地下水从深井中输送到表面,要求溢出以前停止取水。因此需要并免维护的水位测量仪表。由于地下水井的深度可能会很大,采用接触式雷达物位计 可以方便、经济的测量地下水水位,大测量范围可达到100米。
雷达物位计厂家
定华电子生产雷达物位计,产品稳定、调试简单、安装方便,可适用于多种场合。
SYRD933调频雷达物位计厂
雷达是利用电磁波传播过程中折射性和性而研发的一种空间测距电子仪器,初用于国防及航空导航。随着科学技术的推广,雷达逐渐用于工业和民用领域,并衍生出众多型号产品,应用于工业生产中液位测量的雷达液位计就是其中的一类。
雷达液位计测量原理
雷达液位计的测量原理和军工中的雷达一样,都是通过电磁波的直线传播特性测量周围空间的净空距离,即被测物体距离雷达的直线空间距离,具体到工业生产中就是液体的液面到雷达天线的空高。通过对雷达液位计组态可设定雷达天线到容器底部的垂直距离,根据已经测得的液面空高就可计算出液体的液位高度。
测量原理公式为H=L-CT/2
C为电磁波的波速即光速, T为电磁波从发射到接收所用到的时间,L为雷达天线距离容器的低端的垂直高度,H为被测液体的高度。
工业中的液位检测不同于军工航空动辄几十上百千米的空间测距,生产中的液位检测距离都较小,高范围的储罐液位检测也就一二十米的垂直高度,这样的距离空间相对于光速传播的电磁波来说可以忽略不计,于是上述的测量方式很难实现,因为人类无法制造出不用时间的电路处理仪表。
为使雷达测距应用于工业中的液位检测,生产厂商使用了高频的无线电波,使用线性调频连续测距的方法,让天线发射的电磁波的频率随着时间进行改变,接收器接收到的反射电磁波频率与此时的天线发射频率是不同的,通过计算两者的频率差,换算得出电磁波在空间传播的时间,从而能够计算出被测液位的高度。雷达液位计的构造
不同厂商所生产的雷达液位计形式各异,但总体的部件大体是一致的,其主要包括电路部分(雷达波发生器、信号检测、信号处理),天线及接收器和安装附件表体三大部分。根据天线的不同,雷达液位计可分为导波雷达和普通雷达两大类型。
导波雷达液位计
导波雷达是在电磁波发射器的下方安装了一个金属导波体,让高频的无线电波沿着金属体垂直向下传播,当电磁波碰到被测物质的液面时,电磁波会在接触面反射,沿着波导体垂直的返回到雷达液位计天线内部的接收器中,然后处理电路进行分析计算,得出被测液体的液面高度。根据金属导波体的不同,导波雷达又分为缆式和杆式两大类。
缆式导波雷达的导波体为一个柔性的不锈钢金属绳,其末端栓一金属重物,以金属绳在被测液体中垂直的伸入到容器底部,金属绳在使用中漂浮摆动而弯曲。这样结构的雷达液位计主要用于底下罐、零位罐等地面以下的液位测量中。
杆式导波雷达的波导体根据导波杆及天线的不同又分为很多种,有金属杆式的导波雷达,有通过金属管的喇叭天线式的导波雷达,有带有旁通测量筒的导波雷达。这些导波雷达主要用于高出地面的储罐液位测量或生产设备塔器储罐可以侧装旁通管的液位测量。 西安赛谱自动化仪表技术有限公司
普通雷达液位计
普通雷达液位计的天线,只是一个电磁波的发射接受装置,其电磁波发射后通过气相自由传播,由于雷达液位计电磁波为高频的微波信号发散传播性差,而且被测液体距离雷达液位计的高度小,其电磁波传播过程可看成垂直传播,因此这种雷达液位计满足液位测距要求。相对于导波雷达少了导波体节省费用方便安装,在储罐等较高液位测量中得到大量的应用。
根据天线的不同生产厂商制作了不同型号的雷达液位计,以适应不同工况环境。厂里使用的普通雷达液位计的天线有喇叭口、水滴形(防液体挥发凝结)、偏心型(防多重反射电磁波干扰)、宽口喇叭口(防气相介质衰减电磁波)四种类型。
电路处理部分
根据 雷达液位计处理电路的复杂程度,雷达液位计分为单路测量的普通模式和多重处理信号的总线模式。多重信号处理不仅能处理雷达电磁波测距的液位信号也可处理热电阻的温度测量信号,并可通过总线的方式把多台雷达液位计连接起来,通过一根总线远传到控制室内。适用于储罐众多布分散的大中型储罐系统的液位测量,节约了传输线缆的铺设和费用。
雷达液位计故障分析及处理
雷达液位计从测量原理上看是一种高精度的测距仪表,雷达液位计制造厂商也大肆介绍雷达液位计的优点,如可用于工艺过程中挥发性气体、高温、高压、蒸汽、真空及高粉尘等恶劣环境的要求,可对不同料位进行连续测量,但实际使用中雷达液位计常出现很多问题甚至失灵无法使用。
雷达液位计电磁波选取依据
由雷达液位计的测量原理可见,雷达液位计测量过程中的核心是电磁波传播过程中频率波的改变范围,因此天线所接受的雷达波的频率,是液位测量的关键依据。
雷达液位计在使用中天线到被测液体的液面的空间净空中,充斥着各种频率的电磁波,这些电磁波大部分都会通过各种反射、折射传播到天线内部的接收器中,因此雷达液位计的接收器接收到的电磁波是一系列的大量的不同频率的电磁波。
怎样从这杂乱的电磁波中选出真实的液面反射来的电磁波,是雷达液位计能否准确测量液位的关键,这就需要一个选频电路。选频电路选择的依据是根据接受到的电磁波的能量来进行衡量。
电磁波在传播过程中受气相介质,被测介质的反射折射,金属容器壁等物质的碰撞吸收,能量会不断减弱,反射的次数越多能量损失越大,经过的距离越长能量损失越大。由于电磁波是垂直于被测液体的液面发射,其电磁波在被测液面的反射率大(折射率小),可近似为全反射,其在被测液体液面的能量损失,是电磁波回波损失小的。垂直于被测液面的空间距离是电磁波传播中短的距离,这个反射的电磁波在气相空间传播中能量损失也是小的,由此两点被测液位反射回来的电磁波的能量是电磁波频谱中大的,由此雷达液位计的选频电路得出被测液体的空高,从而计算得出被测液体的高度
雷达液位计使用中的问题
雷达液位计电磁波选频可以知道,返回接收器的电磁波的能量大小是雷达液位计选用电磁波频率的依据,从而决定着雷达液位计测量的准确性。如果正常使用中,被测液体所反射的电磁波的能量不是高的电磁波,那么雷达液位计就会选用其他的不真实的电磁波频谱,此时就会造成被测液位失真。
造成这种现象的原因,大体可以归为以下几点:
一、被测液体与雷达天线之间的净空中有较大面积的反射物,致使电磁波在到达液面之前被反射。造成这种现象的原因主要为:
1、被测容器内部有搅拌器、加热盘管、管线等金属物体,如果这些金属体裸露在被测液体的外部,而且正处于电磁波垂直传播的方向,如搅拌机旋转中的浆液转动,就会造成电磁波被提前反射回来,而造成被测液位偏高。
2、雷达液位计安装地点距离容器壁太近或不垂直与被测液面,使电磁波在传播中照射到容器内壁而提前反射回来;电磁波在被测液面反射过程中没有原路返回(斜射时),致使雷达液位计检测不到反射电磁波;液面反射的电磁波经多重反射能量损失过多,而没有被选频电路选中,以上多种情况造成雷达液位计测量失真。
二、波导体(绳缆、杆)上有挂料,电磁波沿着波导体传播中,在没有到达液面前遇到波导体上面的挂料而反射回来,产生虚假液位。安装的波导管不垂直与雷达液位计,造成电磁波斜射到波导管的内壁,而产生如同容器内壁一样的反射或多重反射而使测量失真。
三、被测液体与雷达天线之间的净空中,气相介质蒸汽浓度太大,致使电磁波在空间传播中,能量损失太大,甚至反射波根本到达不了雷达液位计的接收器。
被测液体有加热要求,上部安装搅拌机的情况下尤其严重,由于被测液体在加热搅拌中不断有蒸汽挥发,会造成液面以上的空间中充满了高浓度的介质蒸汽,其微小的液体颗粒不仅对电磁波产生漫反射而且会吸收大量的电磁波能量,使电磁波出现很大衰减,造成雷达天线无法接受回波信号。
被测液体中含有水份时,挥发的水蒸气对于电磁波的吸能更加严重。由于水汽具有易冷凝的特性,气相空间含有的水汽在罐顶罐壁附近会逐渐冷凝,积聚在一起形成较大的水汽滴,充斥在液位上方的空间里,对于电磁波具有强烈的吸能作用,致使电磁波的能量衰减过大无法到达雷达接收器,造成雷达液位计彻底失去工作能力。
四、雷达液位计天线附着赃物,致使电磁波刚刚发射出就被反射回来,甚至根本发射不出去。这样的状况即使使用防凝结的水滴形天线,也无法避免雷达液位计的突然失灵。
雷达液位计天线附着赃物是被测介质挥发的升级加重,被测液体净空中大量充斥着气相蒸汽,其会附着在雷达液位计的天线上,是易冷凝的高粘介质,雷达液位计安装在储罐顶部温度较低,挥发的介质蒸汽易在雷达天线上凝析附着,造成电磁波发射困难,情况严重时介质甚至在天线上结焦,损坏天线。
同样被测介质含有水份时,水汽易在天线上附着,致使电磁波发射不出去,使雷达液位计彻底失灵。
五、雷达液位计电路中的保护措施。雷达液位计是一种高科技的测量仪表价格昂贵,处于对仪表本身防护的需要,制造厂商普遍在电路中设置了很多保护措施,如超温保护、低电压保护,高液位保护,运行故障保护以及数据保持,错误锁定等液位检测防护措施。这些防护措施在日常使用中,如果雷达液位计出现问题,保护就会动作,造成雷达液位计停止工作,此时需要查找故障原因,清除恢复后雷达液位计才能正常使用。防护功能随厂商不同而设置,集成度高的防护措施多。如总线式的多功能雷达液位计,其本身的防护措施就多,日常维护要熟悉。
导波雷达物位计,液位计
1.产品概述
1.1测量原理
导波雷达是基于时间行程原理的测量仪表,雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。探头发出高频脉冲并沿缆式探头传播,当脉冲遇到物料表面时反射回来被仪表内的接收器接收,并将距离信号转化为物位信号。
输入
反射的脉冲信号沿缆绳传导至仪表电子线路部分,微处理器对此信号进行处理,识别出微波脉冲在物料表面所产生的回波。正确的回波信号识别由智能软件完成,距离物料表面的距离D与脉冲的时间行程T成正比:D=C×T/2其中C为光速,因空罐的距离E已知,则物位L为:L=E-D
输出
通过输入空罐高度E(=零点),满罐高度F(=满量程)及一些应用参数来设定,应用参数将自动使仪表适应测量环境。对应于4-20mA输出。
1.2测量范围
H----测量范围
L----空罐距离
B----顶部盲区
E----探头到罐壁的小距离
顶部盲区是指物料高料面与测量参考点之间的小距离。
底部盲区是指缆绳部附近无法测量的一段距离。
顶部盲区和底部盲区之间是有效测量距离。
注意:
只有物料处于顶部盲区和底部盲区之间时,才能罐内物位的测量。
2 .仪表介绍
WRD71
应用液体、固体颗粒
测量范围30米
过程连接螺纹、法兰
过程温度-40-250℃
过程压力-1.0-20bar
精度±1mm
频率范围100MHZ-1.8GHZ
防爆/防护等级Exia IICT6/IP67
信号输出4…20mA/HART(两线)
WRD72
应用液体、固体颗粒
测量范围6米
过程连接螺纹、法兰
过程温度-40-250℃
过程压力-1.0-20bar
精度±1mm
频率范围100MHZ-1.8GHZ
防爆/防护等级Exia IICT6/IP67
信号输出4…20mA/HART(两线)
WRD73
应用液体
测量范围6米
过程连接螺纹、法兰
过程温度-40-250℃
过程压力-1.0-20bar
精度±1mm
频率范围100MHZ-1.8GHZ
防爆/防护等级Exia IICT6/IP67
信号输出4…20mA/HART(两线)- 4 -
3.安装指南
下述的安装指南适用于缆式和杆式探头测量固体颗粒料和液体物体。同轴管式探头只适用于液体物体。
3.1安装位置:
<尽量远离出料口和进料口。
<对金属罐和塑料罐,在整个量程范围内不碰壁。如果是金属罐,物位仪表不要安装在罐的。
<建议安装在料仓直径的1/4处。
<缆式探头或杆式探头离罐壁小距离不小于30厘米。
<探头底部距罐底大约30mm。
<探头距罐内障碍物小距离不小于200mm。
<如果容器底部是锥型的,传感器可以安装罐顶,这样可以一直测量到罐底。
3.2右图为杆式雷达安装图,主要用于液体液位的测量。
特点:
<可以测量介电常数大于等于1.9的介质。
<一般用于测量粘度≤500cst而且不容易产生粘附的介质。
<杆式雷达大量程可以达到6米。
<对蒸汽和泡沫有很强的抑制能力,测量不受影响。
3.3右图为双杆式雷达安装图,主要用于液体液位的测量。
特点:
<介电常数比较小的液体物料可以采用双探杆式测量方式,以保障良好的准确测量。
<可以测量介电常数大于等于1.6的介质。
<一般用于测量粘度≤500cst而且不容易产生粘附的介质。
<杆式雷达大量程可以达到6米。
<对蒸汽和泡沫有很强的抑制能力,测量不受影响。
3.4安装方法
<合理安装能确保仪表长期而的测量
仪表可采用螺纹连接,螺纹的长度不要超过150mm,还可以采用在短管上安装。安装短管直径在2″至6″则安装短管高度应≤150mm,若安装于较长的短管上,应底部固定缆式探头或选用对中支架以避免缆式探头与短管末端接触。
当仪表需要安装于直径大于200mm短管时,短管内壁产生回波,在介质介电常数低的情况下会引起测量误差。因此,对于一个直径为200mm或250mm的短管,需要选一个带“喇叭接口”的法兰。
<在塑料罐上安装
注意!
无论是缆式或杆式若想仪表工作正常,过程连接表面应为金属。当仪表装在塑料罐上时,若罐顶也是塑料或其它非导电材质时,仪表需要配金属法兰,若采用螺纹连接,需配一块金属板。
<仪表探头与罐壁的距离
仪表探头至罐壁的距离建议为罐直径的1/6-1/4(至少大于300mm,混凝土罐至少400mm)选择探头长度时,注意探头底部距罐底约大于30mm。
注意事项:
<雷达安装不要装在下料口处(图一)
<应避免罐内其它装置接触到微波传导部件(图二)
<应避免导波缆绳接触到安装短管(图三)
缆绳所受下拉力
当加料和出料时,介质对缆绳将产生下拉力,下拉力的大小取决于下列因素:
1.缆绳长度 2.物料的密度 3.储仓的直径 4.缆绳的直径
以下是6mm缆式探头典型介质产生的压力
干扰的优化
<干扰回波抑制:软件可实现对干扰回波的抑制,从而达到理想测量效果
<旁通管及导波管(仅适用于液体)对于粘度不大于500cst,可采用旁通管,导波管或管式来避免干扰。
腐蚀性介质测量
<如果测量腐蚀性介质,可选用杆式探头套一个塑料套管或四氟套管进行测量。
导波雷达探头末端的固定
<探头末端如需要固定场合应用有两种固定方式:一种是缘固定;另外一种是非缘固定。
■缘固定是指被测介质的介电常数较低且固定在金属罐底时需要缘固定;
■非缘固定是指被测介质介电常数很高,罐体为非金属材料、介电常数很低的材料或与被测介质介电常数十分接近的材料,这时可以采用非缘固定。
※备注:如用户不能确定介质和罐体的介电常数,请直接与厂家联系
4.接线方式
如右图。
5.调试
WRD可以通过三种方式调试:
<通过显示调整模块WPM
<通过调试软件WSOFT
<通过HART手持编程器
5.1通过编程模块调试(WPM)
5.2通过WSOFT软件调试
<雷达传感器都可以通过软件进行调试。采用WSOFT软件进行调试,需要一个仪表CONNECTCAT驱动器。
<使用软件调试的时候,给雷达仪表加电24VDC,同时在连接HART适配器前端加一个250欧姆的电阻。如果一体式HART电阻(内部电阻250欧姆)的供电仪表,就不需要附加外部电阻,这时候HART适配器可以和4…20mA线并联。
5.3通过HART手持编程器
6.导波雷达物位计,液位计仪表尺寸
7.导波雷达物位计,液位计仪表线性
8.导波雷达物位计,液位计技术参数:
工作频率:100MHZ-1.8GHZ
测量范围:缆式:0-30m;杆式、双杆式:0-6m
重复性:±2mm
分辨率:1mm
采样:回波采样55次/s
响应速度:>0.2S(根据具体使用情况而定)
输出电流信号:4-20mA
精度:
通讯接口:HART通讯协议
过程连接: G11 /2A
法兰DN50,DN80,DN100,DN150
过程压力: -1-20bar
电源:电源:24VDC(±10%),纹波电压:1Vpp
耗电量:max 22.5mA
环境条件:温度-40℃~+70℃
外壳防护等级:IP67
防爆等级:EXia II CT6
两线制接线:仪表供电和信号输出共用一根两芯屏蔽电缆线
电缆入口:2个M20*1.5或1 /2NPT(电缆直径5--9mm)
9.产品选型
WRD70仪表型号, 探头类型, 大量程, 材质
WRD71 6mm缆式探头 30000mm 不锈钢
WRD72 10mm杆式探头 6000mm 不锈钢
WRD73 10mm双杆式探头6000mm 不锈钢(法兰安装)
防爆
P非防爆型(普通型)电流信号输出(4-20mA)HART协议
I本安防爆型(Exia IIC T6)电流信号输出(4-20mA)HART协议
D本安型+隔爆型(Ex d iaⅡC T6)电流信号输出(4-20mA)HART协议
一体化过程连接/材质
G G11 /2A螺纹不锈钢
N 11 /2NPT螺纹不锈钢
C法兰DN50 PN16C不锈钢
D法兰DN80 PN16C不锈钢
E法兰DN100 PN16C不锈钢
F法兰DN150 PN16C不锈钢
H法兰DN200 PN16C不锈钢
K法兰DN250 PN16C不锈钢
Y约定
关键词:
1 故障现象
芳烃装置导波雷达液位计使用量比较大,LT3021 、LT3613出现故障的几率比较大,常见的故障现象即为液位显示与实际液位值不符。
2 原因分析
一般导波雷达液位计出现此故障原因有以下两个原因:1)介质不干净,污染了导杆;2)介质的介电常数发生了变化,导致测量不准确。
3 处理方法
1)排放:通知工艺操作人员,办好仪表工作票(联系单)。让工艺外操人员关闭仪表上下截止阀,仪表人员对液位计进行低点排放。排放后如果仪表读数保持一定值不变,则应判断为导波杆被脏污介质污染。此时对仪表进行下线(即从现场拆除),对导波杆进行清洗,清理导波杆上面的附着物,然后连表头一起进行重新校验;
2)调介电常数:如果仪表排放后显示归零,但投用后显示仍然不准,则判断为介质介电常数发现了变化,此时对仪表介电常数进行调整:a)打开显示表头盖,按向上(或向下)箭头翻动显示屏幕上面的选项,直至翻到“Dieelctec(select)”菜单;b)在屏幕出现Dieelctec(select)时按下回车键 ,屏幕面出现“!”标志,此时仪表参数为可改变模式。c)出现“!”标志后按上下键翻动选择介电常数值(1.4-1.7,1.7-3,3-10,10-100)一共四个选项,选择完后再按回车键确认,等待几秒钟后显示屏幕自动返回测量值显示页面,观察液位显示值。d)当选择的介电常数值能使仪表的显示值与实际液位值相符时,则使用用此介电常数值;当不相符时,则继续选择下一个介电常数值进行试验,直到仪表显示值与实际值相符。
4 总结
导波雷达液位计广泛应用于石油化工行业的液位测量中,掌握导波雷达液位计的常见故障及处理方法是每名仪表维修工必备的技能。本文对装置现场导波雷达液位计的常见故障和处理方法进行了简要介绍,有不当之处,敬请批评指正。