TK-802高频雷达液位计厂商
概述
蒸汽汽包是石油化工,发电等工业过程中的重要设备,保持液位稳定是汽包运行的重要条件。带气象补偿的导波雷达液位计克服了差压液位计,浮筒液位计,电接点液位计的缺点,维护量小,测量准确。
汽包液位测量的现状
目前,从汽包液位测量的基本原来来看,广泛使用的主要是基于连通器式和压差式两种原理。汽包液位测量的仪表主要有差压液位计,浮筒液位计和导波雷达液位计等仪表。
1. 差压汽包液位计。差压式汽包液位计测量原理是通过吧液位高度的变化转化成差压的变化来测量液位计,这种转换是通过平衡容器形成残币水柱实现的,其准确测量液位计的关键是液位与差压之间的准确转换。差压汽包液位计的有点事精度和稳定性高,运行中故障率低,维护量小,但这种测量方式的误差与汽包压力和参比水煮温度有关,需要进行汽包夜里校准,且补偿计算复杂,此外还应考虑平衡容器温度变化造成的影响。
2. 浮筒液位计。浮筒液位计是基于浮力原理工作的。当液位计在0位时,扭力管受到浮筒中立产生的扭力矩大,扭力管转角处于0°。当液位逐渐上升至高时,扭力管受到浮力产生扭力矩,转过一个角度,变送器将该角度转换成4~20MA直流信号,该信号正比于被测量液位。这种测量方式介质的密度变化会对测量精度造成影响,受到机械振动也会造成读数不准确。
3. 电接点液位计。电接点液位计属于连通管液位计,原理是利用在锅炉水肿的电对筒体阻抗小而在蒸汽中的电对筒体的阻抗大的特性来测量液位。高压锅炉的锅炉水电导率一般要比饱和蒸汽的电导率大数万到数十万倍,因而电接点街违纪指示值受气包压力变化的影响较小,能方便的远传液位信号。但是有取样传感器性差,电机机械密封易泄露,电使用寿命短,指示不连续,维护量大的缺点。
综上所述,由于汽包液位测量对象的复杂性,实际运行中的不确定因素和较大的测量误差,导致汽包液位计的测量常有较大的偏差。导波雷达液位计测量是一种的测量技术,克服了差压式,浮筒式,电接点等液位测量仪表的缺点,满足汽包液位测量的需求。
导波雷达液位计测量原理及特点
1. 测量原理。导波雷达液位计是依据反射原理为基础的雷达液位计,电磁脉冲信号以光速沿钢缆传播,当遇到被测介质时,雷达液位计的部分脉冲被反射形成回波并沿相同路径返回到脉冲发射装置,发射装置与被测介质表面的距离同脉冲在其间的传播时间成正比,经计算得出液位高度。
2. 特点。导波雷达液位计的优点是信号稳定,测量不受液体密度和电气特性影响,测量,测量与调校方便,安装成本低且维护方便。
3. 导波雷达液位计的选型及安装要求
选型。导波雷达液位计是靠传感器发射电磁波,因此传感器的选择是导波雷达液位计选型的重要部分。导波雷达液位计的传感器有杆式,揽式和同轴式三种类型。通常选用杆式传感器。当测量范围较大时,由于运输和安装不变,建议采用揽式传感器。
安装。导波雷达液位计的安装需考虑安装要求,容器特性和过程连接等因素。主要安装方式有以下两种:顶装或者侧装。
导波雷达液位计两种安装方式安装时应注意:安装时要导波雷达与关闭需要由适当的距离;避免仪表传感器下方有明显障碍物,阻碍雷达波顺利达到被测介质表面;不要将导波杆安装在进料口附近;传感器与设备底部要有一定距离,不能接触到罐底。
4. 气相补偿技术(GPC)。在高温高压条件下,电磁波信号在介质上方的蒸汽中的传播速度会降低,此时雷达测量的液位值将减小。选用带气相补偿的导波雷达,通过气相补偿功能队测量值进行补偿,可以得到一个准确的实际液位值。
导波雷达液位计在汽包液位计测量案例
在某锅炉装置的汽包上,汽包是产汽系统的主要部分,利用转化炉烟气段的高温热量和炉出口转化气高温余热,产出10.5MPA高压蒸汽,一部分作为工艺上的配汽参与反应,另一部分外送至高压蒸汽管网,实现设能的综合利用,提高装置的运行效率。由于汽包对于锅炉装置的重要性,测量汽包液位先后共使用了三种测量仪表:差压式液位计,普通导波雷达液位计,带GPC功能导波雷达液位计。由下图可知,通过实际测量,在高温时,普通导波雷达误差高达18%,带GPC时,测量误差仅为2%,带GPC功能导波雷达液位计在高温下测量数据比较稳定,真实。
三种仪表测量数据比较
总结
带GPC功能导波雷达液位计在测量高温高压的环境中,各项性能明显优于其他类型的液位计,不受工艺条件的线制,维护量小,性能。是在汽包液位测量的不二之选。
导波雷达液位计是基于时间行程原理的测量仪表,雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。探头发出高频脉冲并沿缆式探头传播,当脉冲遇到物料表面时反射回来被仪表内的接收器接收,并将距离信号转化为物位信号。
特点
1、对蒸汽和泡沫有很强的抑制能力,测量不受影响;
2、不受液体密度,固体物料的疏松程度、温度、加料时的粉尘的影响;
3、低维护,高性能、高精度、高性,使用寿命长。
雷达料位计的工作原理与分类
雷达料位计通过发射6-80GHz的微波信号并接收回波来测量物料高度,分为脉冲波(量程30m)和调频连续波FMCW(精度±1mm)两种。26GHz设备适用于大多数工况,80GHz高频型号可检测介电常数低至1.4的物料。某化工厂应用显示,80GHz雷达测量ε=1.8的塑料颗粒时,信号强度比26GHz型号提升20dB。最新相控阵技术实现电子波束偏转,能自动避开仓内障碍物,安装灵活性提高40%。
一.产品优势:ZKHH-LD-YWJ-DB 导波雷达液位计的电磁脉冲以光速沿钢缆或探棒传播,当遇到被测介质表面时,部分脉冲被反射回来形成回波,并沿相同路径返回到脉冲发射装置,发射装置与被测介质表面的距离同脉冲在其间的传播时间成正比,回波的性和振幅取决于上层介质与下层介质的介电常数εr。一般来讲,上层的介质通常为气体,其介电常数接近εr1.0,下层被测介质的介电常数较高。
应 用:液体
测量范围:10米
过程连接:螺纹、法兰
过程温度:-20-220℃
过程压力:-1.0-40bar
精 度:< 0.1%
分 辨 率:1mm
重 复 性:±3mm频率范围:100MHZ-1.8GHZ
防爆等级:Exd II BT4
防护等级:IP68
信号输出:4…20mA/HART(两线)
Rosemount3301/3302 其他液位变送器23.5M 5.0mm316L 24VDC4-20mA(Hart)(mA) 液体
罗斯蒙特3300导波雷达液位和界面变送器
1. 罗斯蒙特3300在众多应用领域中,提供且的液位测量。
凭借高灵敏度和信号处理性能的导波雷达技术,罗斯蒙特3300系列通过一个变送器便能同时进行
液位和界面两种测量。3300系列现推出一系列型导波杆,设计用于即使在恶劣的过程环境下也
能进行测量。 二线制连接确保了安装简便经济。 其特点包括如下:
1.1 高温和高压导波杆用于要求高的液位测量领域。
1.2 多样的导波杆几乎可满足应用领域的需求。
1.3 多变量、环路供电的液位和界面变送器可减少储罐穿孔数目,并节省安装成本。
1.4 直接液位测量无需对温度、压力、密度、介电性能或导电性能的变化进行补偿。
1.5 简便易用的雷达组态工具使得设置简单,并通过波形图和记录工具提供诊断。
1.6 几乎不受粉尘、蒸汽、干扰物的影响。
1.7 坚固的模块化结构降低了运行成本,提高了性。
1.8 易于集成于现有设备中。
2. 产品技术规格
3.罗斯蒙特3300导波雷达变送器应用
在其它类型环路供电变送器无法胜任的一系列应用环境下,罗斯蒙特3300系列可提供而经济
的测量。
# 旁通管内的液位测量
导波雷达是在旁通管内进行测量的理想选择。它不受密度变化、旁通管组态的影响,且无活动部件,从
而可节省维护费用。这些优势使其更加方便,可替代浮筒液位计。
# 高温和高压(HTHP)应用
高温和高压液位测量不仅仅要求有更厚材料或具有更强冷却性能的常规变送器。这些应用环境要求变
送器的设计能够适应热胀冷缩的要求,具有的强度,并可微波信号的馈通.新型高压和高
温罗斯蒙特3300系列可与多种类型的导波杆配合使用,可应用于高达345bar的压力环境和高达
400℃的温度环境。
# 在液化气和液氨储罐中进行液位测量
液化石油气(LPG)等液化气和其它压力应用中,所要求的测量设备是免维修设备。无须打开储罐便可
对雷达头进行维护,因此在储罐打开受限的压力应用和挥发性应用环境下,罗斯蒙特3300系列为理
想选择。
# 对液体和浆液进行液位测量
在其它雷达变送器无法胜任的领域,罗斯蒙特3300系列依然可出地提供的数据。 变送器具有
高信噪比和沿导波杆聚焦的雷达脉冲,有利于降低回波干扰。
# 界面液位测量
多变量™ 罗斯蒙特3302是市场上一款环路供电变送器,可提供多液位测量。 由于具有的信
号处理性能,它在不同液体(诸如油、水等)的储罐内可同时测量顶面液位和界面位置。
# 筒仓内的固体测量
罗斯蒙特3301虽然是为液位测量设计而成,但是也可以适用于多种固体应用领域。
TK-802高频雷达液位计厂商
现场情况:介质:液化氨气,量程:10m,法兰:DN100,现场有磁翻板液位计现场显示。
分析:液化氨气属于易燃易爆介质,有毒,带腐蚀性,通常采用球形罐存储,压力约2.5Mpa,常温,介电常数小(1.6-1.9),一般带有导波测量管。
选型:导波雷达液位计,防爆,高压,标准DN100法兰
GDLD601-I41AMYNWL=10m
现场问题及原因分析:
问题1、现场磁翻板液位计与导波雷达物位计显示存在固定偏差40cm。
原因:如图:磁翻板液位计零点与导波雷达物位计零点不在同一个水平面,相差0.4m,选型时量程提供错误,应该选择10.4m。
解决:由于现场已生产,带压容器,不能将导波雷达物位计拆卸更改缆绳长度,只能将导波雷达
量程参数改为10.4m。更改后与磁翻板液位计除液位0.4m以下外显示一致。存在问题,容器内液氨液位降至0.4m以下后,导波雷达依然显示0.4m,不能归0。与使用厂家协商,可以接受。
问题2、现场仪表经常出现损坏现象。
原因:经检查,此罐为高压容器罐,压力约为2.5Mpa,由于导波雷达物位计的旁的其他仪表存在轻微渗露,导波雷达进线口没有拧紧,导致部分氨气进入电路板仓,腐蚀接线端子,致使仪表工作不正常。
解决:从新密封雷达旁边泄露仪表,拧紧导波雷达电气接口。
回声曲线图
结论:由于测量液化氨气存在高压、腐蚀、有毒、挥发、介电常数小等工况,但只要我们选型正确,由回声曲线图可知,可以满足现场高精度、测量的需求,而且通过应用该仪表,有效地降低了职工劳动强度,消除了事故隐患,为地面系统的平稳控制提供准确依据和数据。
一、消防水泵的出水管设置要求
1、 水泵出水管的流速,关系到二次输送能耗的重要参数,参考GB50015 第3.6.9条的规定:当DN15-20时,流速小于等于1.0米/秒;当DN25-40时,流速小于等于1.2米/秒;当DN50-70时,流速小于等于1.5米/秒;当大于等于DN80时,流速小于等于1.8米/秒;
2、GB50974 第5.1.13-8条规定,当消防水泵出水管的管径小于DN250时,其流速宜为1.5m/s~2.0m/s,当管径大于DN250时,宜为2.0m/s~2.5m/s;
流速测量仪器
3、出水管上的阀门与附件设置,通常有同心大小头、压力表、可曲挠橡胶接头、止回阀、闸阀(控制阀门);
4、GB50974 第5.5.11条规定,消防水泵出水管应进行停泵水锤计算;应采取消除停泵水锤的技术措施;
5、根据《水泵及水泵站》,水泵出水管中的闸阀,因为承受高压,所以启闭都比较困难,当直径大于等于400mm时,大都采用电动或水力闸阀;
6、根据《水泵及水泵站》,当管径小于250mm时,流速1.5m/s~2.0m/s;当管径大于等于250mm时,流速2.0m/s~2.5m/s;
7、关于水锤,在压力管道中,由于流速的剧烈变化而引起一系列急剧的压力交替升降的水利冲击现象。究其原因,当属流体的惯性,只不过流体的惯性更为复杂。
8、关于停泵水锤的防护措施:设水锤消除器、设空气缸、采用缓闭阀、取消止回阀、其他措施。
9、消防泵出口可采用多功能水泵控制阀(CECS132:2002)。附件连接:水泵—同心大小头—压力表—多功能水泵控制阀—可曲挠橡胶接头—检修用阀门。
10、停泵水锤防护措施有多种,不一定非要采用带胶囊的水锤消除器;在流量不是很大、扬程不是很高时,未必一定要设水锤消除器,设微阻缓闭止回阀等具有缓闭功能的止回阀一样可以。
11、GB50974 第8.3.3条规定,消防水泵出水管上的止回阀宜采用水锤消除止回阀,当消防水泵供水高度超过24m时,应采用水锤消除器。当消防水泵出水管上设有囊式气压水罐时,可不设水锤消除设施。
二、消防水泵吸水和出水管上的压力表设置要求:
1、选压力表时,应注明名称、型号、精度等级和测量上限值等。
2、压力在+40Kpa以上时,一般选用弹簧管压力表或波纹管压力计。
3、一般测量用压力表,应选用1.6级或2.5级。
4、在管道和设备上安装的压力表,表盘直径为中l00mm或中150mm;安装在照度较低、位置较高或示值不易观测场合的压力表,表盘直径为中150mm或中200mm。
5、 测量稳定的压力时,正常操作压力值应在仪表测量范围上限值的1/3~2/3;测量脉动压力(如:泵、压缩机和风机等出口处压力)时,正常操作压力值应在仪表测量范围上限值的1/3~1/2。
6、GB50974要求压力表量程应不小于设计工作压力的2倍。
三、消防水泵吸水管上的真空压力表的设置要求:
真空压力表的压力在-0.1Mpa~0Mpa时,宜选用弹簧管真空压力表。
四、消防水池水位监测装置设置要求:
GB50974 第4.3.9条的要求,消防水池应设置就地水位显示装置,并应在消防控制中心或值班室等地点设置显示消防水池水位的装置,同时有高和水位报警的装置。液位计分类:液位计种类繁多,如磁翻柱液位计、浮球液位计(液位开关,机电人脉公众号)、玻璃板式液位计、玻璃管式液位计、超声波液位计、导波雷达液位计、投入式液位变送器等等。
1、对消防水池而言,如采用磁翻板液位计等,需要在消防水池侧壁做好留洞工作(小规格防水套管为DN50,然后通过管道变径连接液位计)。
2、如采用投入式液位变送器,投入式液位变送器由不锈钢探头、导气电缆和电气盒组成,电源为13—36VDC(直流电源)。可结合消防水池侧壁检修孔,将不锈钢探头和导气电缆投入水池内。(不锈钢探头贴水池底板安装)
五、流量计量装置设置要求:
流量计常用的有电磁流量计(管段式和插入式)、超声流量计、涡街流量计、转子流量计等。
以电磁流量计为例,安装于选用注意事项如下(理论上,只要被测流体具备一定的导电性(导电率大于5 μ S/cm),就可以选用电磁流量计):
1、公称压力常用有0.6,1,1.6,4MPa等。
2、供电电源:单相交流电 85-265 V, 45-63Hz,功率小于20W;直流供电11-40VD.C。
3、应安装在水平管道较低处和垂直向上处,避免安装在管道的高点和垂直向下处。
4、测量管道内充满液体。
5、流量计前方少要有5D(D为流量计内径)长度的直管段,后方少要有3 D(D为流量计内径)长度的直管段。
6、测量一般的介质时,电磁流量计的满度流量可以在测量介质流速0 . 5~12m/s 范围内选用,范围比较宽。选择仪表规格(口径)不一定与工艺管道相同,应视测量流量范围是否在流速范围内确定,即当管道流速偏低,不能满足流量仪表要求时或者在此流速下测量准确度不能时,需要缩小仪表口径,从而提高管内流速,得到满意测量结果。
测量导电性良好的液体,通常大流速不超过5m/s,经济流速范围在1.5m/s~3m/s。测量低电导率的流体,则尽可能选择低流速,原因是流速提高流动噪声会增加,从而导致流量信号输出晃动现象。
7、一般传感器供货时已经设计了接地电,但是当外界电磁场干扰较大时,电磁流量计应另行设置接地装置,接地线采用截面积大于4 mm 2 的多股铜线,接地线埋入潮湿地下1m,接地电阻小于10 Ω,不能和电机或其他设备共用地线。