GJ05R83雷达物位计生产厂家
雷达物位传感器的测量原理
雷达物位传感器基于时域反射(TDR)原理,通过发射26GHz或80GHz高频电磁波并计算回波时间差实现物位测量。电磁波在空气中传播速度接近光速(3×10⁸m/s),1ns的时间分辨率对应15cm的测量精度。某石化储罐实测显示,80GHz传感器对ε=1.8的柴油测量误差仅±2mm,比超声波传感器精度提高5倍。最新相位干涉技术可识别0.1°的相位变化,将分辨率提升至0.1mm级。传感器通常采用FFT算法处理回波信号,能在-40~200℃环境稳定工作。
JCRD导波雷达液位计价格,JCRD导波雷达液位计供应,JCRD导波雷达液位计安装导波雷达液位计
产品型号:JCRD73导波雷达液位计,可发出高频率微波,沿着探杆传播,由于遇到被测介质,介电常数突变,引起反射。发射脉冲与反射脉冲的时间间隔与被测量介质的距离成正比。同时,导波雷达也可以测量两种不同介质的界面,充分利用介质的介电常数的不同。脉冲的工作方式可测小介电常数介质,并适用于各种金属,非金属容器内,对人体及环境无伤害。
JCRD导波雷达液位计价格,JCRD导波雷达液位计供应,JCRD导波雷达液位计安装导波雷达液位计
应用范围:
JCRD系列导波雷达液位计:适应各种存储容器或过程计量环境,液体、浆料、固体比如:原油、清油储罐,原煤、粉煤仓位,挥发性液体储罐,焦碳料位,浆料储罐,固体颗粒。
1、雷达液位计可以测量液体、固体介质比如:原油、浆料、原煤、粉煤、挥发性液体等;
2、可以在真空中测量可以测量介质常数>1.8的介质,测量范围可达35m;
3、供电和输出信号通过一根两芯线缆(回路电路),采用4…20mA输出或数字型信号输出;
4、非接触式测量安装方便采用其稳定的材料牢固耐用,分辨率可达1mm;
5、不受噪音、蒸汽、粉尘、真空等工况影响;
6、不受介质密度和温度的变化,过程压力可达40bar,介质温度可达300℃;
7、安装方式有多种可以选择:顶部安装、侧面安装、旁通管安装、导波管安装;JCRD导波雷达液位计价格,JCRD导波雷达液位计供应,JCRD导波雷达液位计安装导波雷达液位计
技术参数:
应用:双杆:液体及固体测量,是小介电常数的液体和固体,复杂过程条件。
z大量程:6m
测量精度:±3mm
过程连接:法兰 螺纹
探测组件材料:不锈钢304 / 316L / PTFE
过程温度:-40…250 °C
过程压力:-1.0…20bar
信号输出:两线制 4…20mA/HART
JCRD导波雷达液位计价格,JCRD导波雷达液位计供应,JCRD导波雷达液位计安装导波雷达液位计,JCRD73导波雷达液位计
一、设计特■ 获得高计量交接精度以监测大容量液体设备
■ 通过第三方 IEC 61508 SIL 2 或 SIL 3 认
■ 可以提供更高的性
■ 型二合一功能可提供冗余液位测量
■ 2 线制 IS 总线电源使得安装便捷
■ 包括有线和 / 或无线数输
■ 可用于测量大容量储罐类型和产品 (范围包括液化气、轻油产品、原油以及沥青等)
提高测量精度、工厂效率和性
- 为大容量液体储罐提供高的液位精度
5900S 液位计及其 0.5 毫米或1毫米的仪表精度可将液位测量的不确定度降至。它通过提供以下功能优化您的存储运营:
■ 符合 OIML 和其他法定计量机构认的计量交接精度
■ 的库存管理
■ 的损耗控制数据
5900S 通常与高精度多点温度传感器配合使用,以计算高精度的 API 标准净体积。
- 使运营更加
■ 没有移动零件可提高性和减少中断
■ 大多数 5900S 天线类型都可以安装在运行中的储罐上
■ 艾默生智能无线技术可大幅减少安装成本,让您可轻松操作远程储罐
■ 5900S 是艾默生完整的储罐液位计量解决方案的一部分,艾默生已为 100,000 多个大容量液体储罐提供了储罐计量服务
- 提高溢出等级
■ 型二合一功能在一个外壳中有两个雷达液位计,可分别进行液位和溢出测量
■ 符合 IEC 61508 的 SIL 2 和 SIL 3 认
■ 符合 API 2350 兼容解决方案
获取完整的液位和库存信息
罗斯蒙特 5900S 是一款性能且具有计量交接精度的非接触式雷达液位计,适用于罐区和炼油厂。它通常会集成到高性能储罐计量系统中,包括用于计算净体积的平均温度测量。数据将传输到控制室,然后在一台主机或 TankMaster 库存软件包中显示。
艾默生的智能无线解决方案可作为备选方案针对远程储罐以及远距离现场接线不可用的应用,从而节省安装成本。
5900S 液位计提供天线选件以适应大容量液体存储应用和储罐类型。
- 自滴落设计不受冷凝影响
由于天线发射微波的抛光 PTFE 表面是倾斜的,因此其更不易受冷凝水或冷凝物的影响。冷凝液滴不会覆在有源天线上,因此,雷达信号不会因冷凝而衰减,从而确保更高的精度和的性。
- SIL 功能
罗斯蒙特 5900S 通过 SIL 2 和 SIL 3 认适用于防溢出系统。
带有 SIL 选件的 5900S 将在预设液位单独的报警回路并触发罗斯蒙特 2410 储罐 Hub 上的继电器输出。报警信号可连接到紧急停车系统 (ESD)/ 自动防溢出系统 (AOPS)。
SIL 2 需要一个 5900S。SIL 3 通过二合一 5900S 实现。配有SIL 继电器输出的罗斯蒙特 2410 储罐 Hub 也是 SIL 性所的。
- 可实现成本的冗余液位测量二合一液位计
5900S 液位计可在变送器表头中集成两个电子单元。
独有的二合一解决方案可在一台液位计中提供一个主要和一个备用单元,或一台液位计加上一个独立的、基于雷达的高高液位报警功能。
二合一解决方案还可通过组态进行实时增量校验,以比较两个单元的信号。
与安装两台液位计相比,二合一解决方案使机械和电气安装更加简便。
二、订购信息
1. 带抛物面天线的罗斯蒙特 5900S 雷达液位计
带抛物面天线的罗斯蒙特 5900S 是一款性能的非接触式雷达液位计。它是在带固定顶盖、不带导波管储罐上安装的良选。因其具有窄雷达波束和高信噪比的特性,抛物面天线可安装在现有的检修孔盖上并靠近储罐壁。在某些情况下,还可安装在带浮顶的储罐上,用于测量向下至顶盖上目标板的距离。
■ 可测量各种产品,包括轻油产品、重质燃料油以及沥青等
■ 天线设计不受产品积聚和冷凝影响
■ 计量交接精度符合 OIML R85:2008
■ 基于 IEC 61508,符合 SIL 2 和 SIL 3 认
■ 二合一功能可用于冗余液位测量
■ 采用 2 线制低电压 Tankbus 进行通讯,便于安装
■ 通常安装在运行中的储罐上
表 1. 带抛物面天线的 5900S 雷达液位计的订购信息
(1) 要求冗余代码为 2 且带继电器输出 (SIS/SIL) 的罗斯蒙特 2410 储罐 Hub 的代码为 3。如果其中一个液位计处于报警模式,则发出报警。不适用于性能等级代码 X。
(2) 要求带继电器输出 (SIS/SIL) 的罗斯蒙特 2410 储罐 Hub 的代码为 S。
(3) 要求代码为 Q4 的选件。不适用于性能等级代码 X。
(4) 要求带相应计量交接类型认的罗斯蒙特 2410 储罐 Hub。要求一体式 2410 显示单元、罗斯蒙特 2230 显示单元或 TankMaster。附带认的板和密封套件。不适用于性能等级代码 X。
(5) 要求带相应计量交接类型认的罗斯蒙特 2410 储罐 Hub。要求一体式 2410 显示单元、罗斯蒙特 2230 显示单元 (具有相应类型认)或 TankMaster。附带认的板和密封套件。不适用于性能等级代码 X。
(6) 要求代码为 S4 的选件。
(7) 不包括法兰。
(8) 不适用于代码为 U1 的选件。
(9) 要求认 (SIS) 的代码为 S 或 3。
(10) 书包括保压接液部件。
(11) 要求罗斯蒙特 2410 储罐 Hub 中带有一个或多个继电器输出。
2. 带喇叭形天线的罗斯蒙特 5900S 雷达液位计
带喇叭形天线的罗斯蒙特 5900S 是一款非接触式雷达液位计。其管嘴更小,直径小200 毫米(8 英寸),可轻松安装在顶盖固定的储罐上。
■ 可测量各种产品(沥青或类似产品除外,此类产品建议使用抛物面天线进行测量)
■ 计量交接精度符合 OIML R85:2008
■ 基于 IEC 61508,符合 SIL 2 和 SIL 3 认
■ 二合一功能可用于冗余液位测量
■ 采用 2 线制低电压 Tankbus 进行通讯,便于安装
■ 通常安装在运行中的储罐上
表 2. 带喇叭形天线的 5900S 雷达液位计的订购信息
(1) 要求冗余代码为 2 且带继电器输出 (SIS/SIL) 的罗斯蒙特 2410 储罐 Hub 的代码为 3。如果其中一个液位计处于报警模式,则发出报警。不适用于性能等级代码 X。
(2) 要求带继电器输出 (SIS/SIL) 的罗斯蒙特 2410 储罐 Hub 的代码为 S。
(3) 要求代码为 Q4 的选件。不适用于性能等级代码 X。
(4) 要求带相应计量交接类型认的罗斯蒙特 2410 储罐 Hub。要求一体式 2410 显示单元、罗斯蒙特 2230 显示单元或 TankMaster。附带认的板和密封套件。不适用于性能等级代码 X。
(5) 要求带相应计量交接类型认的罗斯蒙特 2410 储罐 Hub。要求一体式 2410 显示单元、罗斯蒙特 2230 显示单元 (具有相应类型认)或 TankMaster。附带认的板和密封套件。不适用于性能等级代码 X。
(6) 要求代码为 S4 的选件。
(7) 要求认 (SIS) 的代码为 S 或 3。
(8) 书包括保压接液部件。
(9) 要求罗斯蒙特 2410 储罐 Hub 中带有一个或多个继电器输出。
3. 带有导波管阵列天线的罗斯蒙特 5900S 雷达液位计
带阵列天线的罗斯蒙特 5900S 是一款用于导波管测量的、性能的非接触式雷达液位计。它提供固定式和铰接盖式两个版本。
典型应用包括带浮顶的原油储罐和带 / 不带内浮顶的汽油 / 成品油储罐。
■ 适用于原油、汽油或同类产品
■ 计量交接精度符合 OIML R85:2008
■ 基于 IEC 61508,符合 SIL 2 和 SIL 3 认
■ 二合一功能可用于冗余液位测量
■ 有效管道内生锈或产品沉积
■ 采用 2 线制低电压 Tankbus 进行通讯,便于安装
■ 铰接盖式版本更易于产品取样和人工投尺测量
■ 通常安装在运行中的储罐上
表 3. 带导波管阵列天线的 5900S 雷达液位计的订购信息
(1) 要求冗余代码为 2 且带继电器输出 (SIS/SIL) 的罗斯蒙特 2410 储罐 Hub 的代码为 3。如果其中一个液位计处于报警模式,则发出报警。不适用于性能等级代码 X。
(2) 要求带继电器输出 (SIS/SIL) 的罗斯蒙特 2410 储罐 Hub 的代码为 S。
(3) 要求代码为 Q4 的选件。不适用于性能等级代码 X。
(4) 要求带相应计量交接类型认的罗斯蒙特 2410 储罐 Hub。要求一体式 2410 显示单元、罗斯蒙特 2230 显示单元或 TankMaster。附带认的板和密封套件。不适用于性能等级代码 X。
(5) 要求带相应计量交接类型认的罗斯蒙特 2410 储罐 Hub。要求一体式 2410 显示单元、罗斯蒙特 2230 显示单元 (具有相应类型认)或 TankMaster。附带认的板和密封套件。不适用于性能等级代码 X。
(6) 要求代码为 S4 的选件。
(7) 要求计量交接类型认代码为 0 或 R,并且天线尺寸为 6 或 8。
(8) 不适用于代码为 U1 的选件。
(9) 要求认 (SIS) 的代码为 S 或 3。
(10) 书包括保压接液部件。
(11) 要求罗斯蒙特 2410 储罐 Hub 中带有一个或多个继电器输出。
4. 带 LPG/LNG 天线的罗斯蒙特 5900S 雷达液位计
带 LPG/LNG 天线的罗斯蒙特 5900S 是一款性能的非接触式雷达液位计,用于测量加压或低温液化气。雷达信号在导波管内传输,即便在液体表面沸腾的情况下,也能使液位计获得强的回波。
■ 计量交接精度符合 OIML R85:2008
■ 基于 IEC 61508,符合 SIL 2 和 SIL 3 认
■ 二合一功能可用于冗余液位测量
■ 具备参考设备功能,可在储罐运行时进行测量校验
■ 采用 2 线制低电压 Tankbus 进行通讯,便于安装
■ 内置压力传感器用于蒸发补偿,可提供测量性能
■ 集成球阀
表 4. 带 LPG/LNG 天线的 5900S 雷达液位计的订购信息
(1) 要求冗余代码为 2 且带继电器输出 (SIS/SIL) 的罗斯蒙特 2410 储罐 Hub 的代码为 3。如果其中一个液位计处于报警模式,则发出报警。不适用于性能等级代码 X。
(2) 要求带继电器输出 (SIS/SIL) 的罗斯蒙特 2410 储罐 Hub 的代码为 S。
(3) 要求代码为 Q4 的选件。不适用于性能等级代码 X。
(4) 要求带相应计量交接类型认的罗斯蒙特 2410 储罐 Hub。要求一体式 2410 显示单元、罗斯蒙特 2230 显示单元或 TankMaster。附带认的板和密封套
件。不适用于性能等级代码 X。
(5) 要求带相应计量交接类型认的罗斯蒙特 2410 储罐 Hub。要求一体式 2410 显示单元、罗斯蒙特 2230 显示单元 (具有相应类型认)或 TankMaster。附带认的板和密封套件。不适用于性能等级代码 X。
(6) 要求代码为 S4 的选件。
(7) 包括集成球阀。
(8) 包括集成球阀和压力变送器。
(9) 要求危险场所认代码为 I1、 I2、 I5、 I6 或I7。(10) 要求认 (SIS) 的代码为 S 或 3。
(11) 书包括保压接液部件。
(12) 要求罗斯蒙特 2410 储罐 Hub 中带有一个或多个继电器输出。
三、技术规格
仪表精度
高精度:±0.5 毫米(0.020 英寸)
标准精度:±1 毫米(0.039 英寸)
温度稳定性
在 -40 至 +70°C(-40 to 至 158°F)的环境中 < ±0.5 毫米(0.020 英寸)
现场总线(标准)
FOUNDATION™ 现场总线 FISCO (Tankbus)
更新时间
每 0.3 秒重新测量一次
可重复性
0.2 毫米(0.008 英寸)
高液位变化率
高 200 毫米 / 秒
计量铅封
是
安装注意事项
请参阅罗斯蒙特 5900S 参考手册
测量原理
FMCW 方法(Frequency Modulated Continuous Wave,调频连续波)是指传输的雷达信号具有在 10 千兆赫周围线性频率变化的特点。当接收到反射后,液体表面反射的频率与通过天线发射的信号频率相比有轻微差异。频率差与天线和液体表面之间的距离成正比,因此与液位也成正比。该技术可获得稳定的测量值。
通讯 / 显示 / 组态
输出变量及单位
■ 液位和空高:米、厘米、毫米、英尺或英寸
■ 液位变化率:米/秒、米/小时、英尺/秒、英尺/小时、英寸/分钟
■ 信号强度:毫伏
组态工具
罗斯蒙特 TankMaster WinSetup、现场手持通讯器
FOUNDATION™ 现场总线特征
对性敏感
否
静态电流消耗
51 毫安
启动电压
9.0 VDC
设备电容 / 电感
请参阅后页的 “ 产品认 ”版块
类别(基本或链路主设备)
链路主设备 (LAS)
可用 VCR 数目
多 20 个,包括一个固定式
链路
多 40 个
小槽口时间 / 大响应延迟 / 小信息间延迟
8/5/8
功能块和执行时间
1 个资源功能块。
5 个转换器功能块(液位、寄存器、Adv_Config、体积和LPG)。
6 个模拟输入 (AI) 功能块:10 毫秒,2 个模拟输出 (AO) 功能块:10 毫秒。
1 个比例 / 积分 / 微分 (PID) 功能块:15 毫秒
1 个信号表征器 (SGCR) 功能块:10 毫秒,1 个积分器 (INT)功能块:10 毫秒,
1 个数学 (ARTH) 功能块:10 毫秒,1 个输入选择器 (ISEL) 功能块:10 毫秒。
1 个控制选择器 (CS) 功能块:10 毫秒,1 个输出分配器 (OS)功能块:10 毫秒。
实例化
是
符合 FOUNDATION™ 现场总线标准
ITK 5.2
PlantWeb 警报支持
是
操作支持向导
重新开始测量,写入保护设备,恢复出厂设置 - 测量组态,启动 / 停止设备模拟,设置为液面,重置统计信息,更改模式,寄存 / 移除假回波,刷新回波峰,校验针,更改气相压力,更改蒸汽温度。
高级诊断
软件、存储器 / 数据库、电子部件、内部通讯、模拟、液位补偿、液位测量、环境温度、气相压力 / 温度补偿、LPG 校验针以及手动测量值等。
电气
Tankbus 电缆布线
0.5-1.5 mm2 (AWG 22-16) 屏蔽双绞线
电源
FISCO:9.0 - 17.5 VDC,对性不敏感(例如 2410 储罐Hub)
实体:9.0 - 30.0 VDC,对性不敏感
总线电流消耗
50 毫安(二合一版为 100 毫安)
微波输出功率
< 1 毫瓦
机械
外壳材质及表面处理
聚酯漆涂层压铸铝材
电缆入口(连接件 / 密封接头)
两个 ½ - 14 NPT,用于电缆密封接头或导线管。变送器交付时,随附有一个用于密封未使用端口的金属堵头。
可选:
■ M20 x 1.5 导线管 / 电缆接头
■ 金属电缆密封接头 (½ - 14 NPT)。
■ 4 针插头型 Eurofast 连接器或 A 型 Mini 4 针插头型 Minifast连接器
总重量
■ 5900S 变送器头:单一版为 5.1 千克(11.2 磅),二合一版为 5.4 千克(11.9 磅)
■ 带喇叭形天线的 5900S:约为 12 千克(26 磅)
■ 带抛物面天线的 5900S:约为 17 千克(37 磅)
■ 带导波管阵列天线的 5900S:约为 13.5-24 千克(30-53 磅)
■ 带 LPG/LNG 天线的 5900S:6 英寸 150 psi 型约为 30 千克(66 磅); 6 英寸 300 psi 型约为 40 千克(88 磅)
天线
5900S 天线采用自滴落设计,某些型号的天线还包括倾斜的抛光 PTFE 表面。较大限度地减少了天线上的冷凝水,雷达信号不会因冷凝而衰减。因此,无需维护操作,而且还提高了其准确性和性。根据储罐类型、储罐开口和应用可以选择适合的一款天线。
变送器表头
5900S 天线类型均可匹配同一变送器表头,从而将备用零件的需求降至。
■ 双仓室变送器外壳将电子部件和接线分开,更换时无需打开储罐
■ 可抵御雷电、湿气 / 雨水,而且外壳表面可耐受硫磺和盐雾环境
■ 电子部件包括一个或两个封闭单元。
二合一解决方案在同一个外壳中安装了两个一样的电气隔离电子单元。
5900S 拥有变送器频率在线调整功能,它使用一个晶体振荡器来控制输出频率,可达到更高的精度。这是无需液位计重新标定的原因之一。
环境
工作环境温度
-40 至 +70°C(-40 至 +158°F)。启动温度为 –50°C(–58°F)
储存温度
-50 至 +85°C(-58 至 +185°F)
湿度
0-100% 相对湿度
侵入防护等级
IP 66/67 和 Nema 4X
抗振性
IEC 60770-1 等级 1 和 IACS UR E10 测试 7
电信
符合:
■ FCC 15B A 类和 15C
■ R&TTE(EU 指令 99/5/EC)ETSI EN 302372; EN 50371
■ IC (RSS210-5)
电磁兼容性
■ EMC(EU 指令 2004/108/EC)EN 61326-1;EN 61326-3-1
■ OIML R85:2008
瞬变 / 内置雷电保护
根据 IEC 61000-4-5,电压 2 千伏等级接地。符合 IEEE 587 B类瞬变保护及 IEEE 472 浪涌保护。
压力设备指令 (PED)
97/23/EC
低电压指令 (LVD)
LVD(EU 指令 2006/95/EC)EN/IEC 61010-1
版本
1. 5900S 标准版
内置 Tankbus 终端电阻
有(需要时可连接)
菊花链
是
2. 5900S 二合一版
仪表精度(1)
± 0.5 毫米(0.020 英寸)
分离
液位计电子部件采用电气分离形式,两个电子单元共用一根天线
接线
单独或常规
储罐 Hub 连接
■ 将两个单元连接到一个 Hub,或
■ 将单元分别连接到不同的 Hub
内置 Tankbus 终端电阻
单 Tankbus 连接:有(需要时可连接)。
双 Tankbus 连接:可终止主 Tankbus。
菊花链
是
3. 5900S SIL 版
分离
液位计电子部件采用电气分离形式,SIL 3 版有共用天线
内置 Tankbus 终端电阻
否
菊花链
是
本质报警信号的电气属性
正常状态下,12.5 VDC,1-2 毫安(无报警)
接线
■ 其他单独的报警用 2 线电缆,或
■ 由两根 2 线电缆合并而成的单根电缆(报警和液位)
4. 带抛物面天线的 5900S
储罐内的工作温度
高 +230°C (+445°F)
测量范围
法兰以下 0.8 至 30 米(2.6 至 100 英尺)
可测量 0.5 至 50 米(1.6 至 164 英尺)。精度可能会下降。
如需更长的测量范围,请咨询当地代表。
压力范围
卡箍 / 螺纹式:-0.2 至 0.2 巴(-2.9 至 2.9 psig)
焊接式:-0.2 至 10 巴(-2.9 至 145 psig)
暴露在储罐环境中的材质
天线:材质符合 AISI 316/316L 和 EN 1.4401/1.4404。
密封:PTFE
O 型圈:FEP 氟聚合物
天线尺寸
440 毫米(17 英寸),定制尺寸的天线请咨询厂家。
人孔尺寸和安装
500 毫米(20 英寸)开口。
使用法兰球将抛物面天线安装在人孔盖上。其设计可在一定范围内轻松调整天线倾角和方向。
灵活的法兰球无需装置即可安装在水平或倾斜的人孔上。
5. 带喇叭形天线的 5900S
储罐内的工作温度
高 +230°C (+445°F)
测量范围
法兰以下 0.8 至 20 米(2.6 至 65 英尺)。
可测量 0.5 至 30 米(1.6 至 100 英尺),精度可能会下降。
压力范围
-0.2 至 2 巴(-2.9 至 29 psig)
暴露在储罐环境中的材质
天线和法兰:材质符合 AISI 316/316L 和 EN 1.4401/1.4404。
密封:PTFE
O 型圈:Viton® 氟橡胶
天线尺寸
175 毫米(7 英寸),定制尺寸的天线请咨询厂家。
管嘴直径
小 200 毫米(8 英寸)
储罐连接件
可使用水平法兰;安装位置靠近储罐壁时,可选用 4° 倾斜法兰。
要求高精度和性时,可使用水平安装法兰。液位计安装在靠近储罐壁的位置时,可使用 4° 倾斜安装法兰,以达到高精度。
6. 带导波管阵列天线的 5900S
储罐内的工作温度
-40 至 120°C(-40 至 248°F)
测量范围
法兰以下 0.8 至 30 米(2.6 至 100 英尺)
可测量 0.5 至 40 米(1.6 至 130 英尺)。精度可能会下降。
如需更长的测量范围,请咨询当地代表。
压力范围
固定安装型:20°C (68°F) 时 -0.2 至 2 巴(-2.9 至 29 psig)。
铰接盖安装型:5 至 8 英寸管道为 -0.2 至 0.5 巴(-2.9 至7.2 psig)。
10 和 12 英寸管道为 -0.2 至 0.25 巴(-2.9 至 3.6 psig)。
暴露在储罐环境中的材质
天线:聚苯硫醚 (PPS)
密封:PTFE
O 型圈:氟硅橡胶
法兰:材质符合 AISI 316/316L 和 EN 1.4401/1.4404
导波管尺寸
5、6、8、10 或 12 英寸,定制尺寸的导波管请咨询厂家。
天线尺寸
5、6、8、10 或 12 英寸,定制尺寸的天线请咨询厂家。
储罐连接件
5 英寸孔型符合 ANSI 5 英寸 150 级
6 英寸孔型符合 ANSI 6 英寸
150 级 /DN 150 PN 16
8 英寸孔型符合 ANSI 8 英寸
150 级 /DN 200 PN 10
10 英寸孔型符合 ANSI 10 英寸
150 级 /DN 250 PN 16
12 英寸孔型符合 ANSI 12 英寸 150 级
低损耗模式
为达到计量交接大容量液体存储应用所需的精度,天线采用低损耗技术,该技术专为罗斯蒙特储罐计量产品而发明,用于在导波管中心传输雷达波。
这样可以消除由于导波管内部生锈和产品沉积而导致的信号衰减和精度下降。
7. 带 LPG/LNG 天线的 5900S
球阀的工作温度
-55 至 90°C(-67 至 194°F)
储罐内的工作温度
-170 至 90°C(-274 至 194°F)
测量范围
法兰以下 1.2 至 30 米(3.9 至 100 英尺)
可测量 0.8 至 60 米(2.6 至 200 英尺)。精度可能会下降。如需更长的测量范围,请咨询当地代表。
压力范围
-1 至 25 巴(-14.5 至 365 psig)。
注意!法兰的压力等级可能高于 25 巴,但大储罐压力仍为25 巴。
压力传感器(可选)
暴露在储罐环境中的材质
天线和法兰:材质符合 AISI 316/316L 和 EN 1.4401/1.4404。密封:石英和 PTFE
导波管尺寸兼容性
天线可安装于 4 英寸 sch. 10、4 英寸 sch 40 或 100 毫米(内径 99 毫米)的导波管。如天线尺寸需定制,请咨询厂家。
法兰尺寸和等级
4 英寸 150/300 级
6 英寸 150/300 级
8 英寸 150/300 级
压力密封
附带双阻断功能的压力密封件由石英 / 陶瓷窗和防火球阀构成。使用压力传感器,可修正因蒸气而导致的偏差,从而获得测量性能。
校验可能性
通过参考设备功能,可在储罐运行时进行测量校验。安装在导波管孔内的校验针以及位于下方导波管末端的带校验环的反射板可在固定的预定义距离提供参考回波。
四、产品认
五、尺寸图
图 1. 带抛物面天线的罗斯蒙特 5900S 尺寸
图 2. 带喇叭形天线的罗斯蒙特 5900S 尺寸图
图 3. 带导波管阵列天线的罗斯蒙特 5900S 尺寸图
图 4. 带 LPG/LNG 天线的罗斯蒙特 5900S 尺寸图
导波型雷达液位计报价
特点
1.可以测量介电常数大于等于1.4的介质。
2.一般用于测量粘度≤500cst而且不容易产生粘附的介质。
3.杆式雷达大量程可以达到6米。
4.对蒸汽和泡沫有很强的抑制能力,测量不受影响。
5.对于介电常数比较小的液体物料可以采用双探杆式测量方式,以保障良好的准确测量。
<测量范围可达24米
<适用的介质温度范围为-50℃∽+250℃,适用的压力范围高达40bar
<有多种探头类型和材质
<数字化显示
导波雷达液位计应用于水液储罐、酸碱储罐、浆料储罐、固体颗粒、小型储油罐。各类导电、非导电介质、腐蚀性介质。如煤仓、灰仓、油罐、酸罐等。
导波雷达液位计的技术优势:雷达液位计对液体、颗粒及浆料连续物位测量。雷达液位计的测量不受介质变化、温度变化、惰性气体及蒸汽、粉尘、泡沫等的影响。雷达液位计的精度为5mm,量程60米,耐250度高温、40公斤高压,雷达液位计适用于爆炸危险区域。
导波雷达是基于时间形成原理的测量仪表,雷达波以光速运行,运行时间可以通过电子部件转换成物位信号。探头发出高频脉冲并沿缆绳传播,当脉冲遇到物料表面时反射回来被仪表内的接收器接收,并将距离信号转化为物位信号。
导波型雷达液位计报价
性能参数
GJ05R83雷达物位计生产厂家
导波雷达液位计在检测液位时采用的是时域反射(TDR)原理,信号的传输介质是同轴电缆和导波杆,可以认为导波雷达液位计进行液位检测是基于传输线的特性的。以下简要介绍 TDR 的原理。
同轴电缆和导波杆是比较常用的信号传输线,我们可以把它等效为理想的双导线传输线,由相同的很多小的部分组成,每个小的部分又由很多的电阻 R、电容C、电感 L 和电导 G 等元件一起组成,并且同轴电缆和同轴导波杆的特性阻抗在每处都是一样的。
同轴电缆等效传输线原理图如图 2-1 所示。
图 2-1 同轴电缆等效传输线原理图
由上图知道,如果同轴电缆与其他介质相接触,由于介电常数(这里用rε 来表示)是不同的,会使相接触部分的等效阻抗发生一定变化。当同轴电缆的某一端发射出脉冲信号时,脉冲信号会沿电缆进行传输。如果传输中没有与其他介质的接触时,那么对应的负载阻抗和电缆的特征阻抗相等,那么脉冲会被吸收因此没有回波信号产生;如果发生与其他介质的接触时,那么对应的负载阻抗就会发生变化,使之和特征阻抗不相等,就会产生回波信号。
这里定义一个反射系数为 ρ ,它是反射信号与发射信号的幅度的比值,我们用它来用来表示负载阻抗和特性阻抗的关系。
其中:tZ 表示任意一点的阻抗,cZ 表示特性阻抗。因此,在各种情况时阻抗和反射系数的不同如下所示:1.当同轴电缆传输正常时,那么t cZ =Z
, ρ =0 ,发射脉冲会被吸收,没有回其中:tZ 表示任意一点的阻抗,cZ 表示特性阻抗。因此,在各种情况时阻抗和反射系数的不同如下所示:
1.当同轴电缆传输正常时,那么t cZ =Z , ρ =0 ,发射脉冲会被吸收,没有回
图 2-2 断路回波信号示意图
3.当同轴电缆传输短路(即为与其他介质接触时)时,那么tZ =0 , ρ = −1,同样产生全反射,但是短路回波信号和发射信号具有相反的性,短路回波示意图如图 2-3 所示。
图 2-3 短路回波信号示意图
当脉冲信号在导波杆上传输时,如果碰上其他介质就会使该点的阻抗变化,从而反射系数也会发生变化,会产生回波信号。我们可以进一步计算发射脉冲和回波脉冲的时间差就能计算出发射电路到该介质接触点的距离。
导波雷达测量系统原理:
导波雷达液位计就是时域反射原理来进行测量的,测量过程我们分为信号传播和整个测量系统来作介绍。
导波雷达信号传播示意图如图2-4所示。
在机械机构上,仪表的表头内部的收发电路会通过同轴射频接插件和同轴电缆相连。同轴电缆的另一端将会在法兰的位置与同轴导波杆连接。导波杆则是直接插入到罐体的介质内,导波杆的末端与罐底底部则是有一段距离的。
根据左图可以看到,电路板输出的脉冲信号会通过同轴电缆,再在同轴导波杆上进行传播。由2.1节的介绍,在同轴电缆和导波杆的连接处会首先发生断路,进而一部分信号会产生一个顶部回波信号,但是仍有一部分信号还会继续沿导波杆传播。当信号与被测液体表面接触时,其阻抗特性会发生变化,其一部分也会被反射,会再产生一个真正的液位回波信号。也会有另外一部分信号仍然会继续向下传播,终会损耗在不断发射中。液位计可以判断出液位回波和顶部回波之间的时间差,根据这个时间差,我们用单片机进行计算就可以得到液位的高度。
根据右图所示,在罐体为空的时候,没有液位就不会发生液位回波信号,但是仍然会有顶部回波信号,而且在导波杆的底部会断路而产生一个的底部回波信号‘。
假如罐体内有两种不同的介质,由于密度不同这两种介质会分别存在于液体的上部和下部。如果这两种介质的介电常数大不相同,那么就可以通过回波的不同来判断两种介质的分界面,进而也可以得出这两种介质的不同高度。由于脉冲信号是通过导波杆传播,导波杆上的空气、气态的凝结不会影响性能,因此可以长时间测量低介电常数的产品。一般情况下被测液体的介电常数越大回波信号也就越强,也就更容易检测出液位,比如水比丁烷更容易测量。
假设电磁信号在介质中传输无损耗,则信号在其中的传播速度可以表示为:
其中:c为电磁波在真空中的传播速度(3x10八立方米m/s)。
Y为介质的相对介电常数,
从为同轴电缆的相对磁导率(大多数液体其近似等于l}o
我们可以得到:
若电磁波在同轴导波杆上的传播距离为L,那么回波信号的传播时间为:根据这个实际传播速度结合时间就可以计算出液位[[19]。因此,的深度:
L可以表示为液位因罐体高度为H,后得到的液位高度为:
h=H一L导波雷达测量系统示意图如图2-5所示。
图中为整个导波雷达测量系统,导波雷达液位计发送的是窄脉冲信号,对刚性杆大测量范围为6.1 m,柔性杆为大范围则为30m。在实际测量中,在量程的上部和下部都会存在一段死区,分别为上部死区和下部死区,其长度分别为Lz和L,,这两个死区的特性是非线性的,所以造成测量误差会偏大。我们把上部死区的低点定义为上参考点,用它来代表液位的满点(高可测点)和20mA输出电流。下部死区的高点则定义为下参考点,用它来代表液位的零点(低可测。
点)和4mA输出电流。在导波杆末端到罐底的距离为L。
由此,在实际应用时,液位的计算需要考虑到上部死区和下部死区的因素。在液位显示时需要加上杆末端距离罐底的距离L。和下部死区的高度L1 [21] o
一般液位测量时只需要测量一定范围内的高度,即有效量程为两个死区之间的高度,也叫线性区。
在罐体内实际显示的液位高度(即以下参考点作为零点)为:
hD = h一L。一L, 这里L+L、是液位的整体迁移量。
本章主要是对导波雷达液位计进行了理论分析,首先介绍了导波雷达液位计测量所需要的时域反射原理,接着详细讲述了导波雷达测量系统的原理,后则概括了本课题所设计的导波雷达液位计所要实现的功能和特点。
导波式雷达液位计采用了100MHz~1.8GHz的发射频率,不锈钢包四氟杆式探头,安装方式四氟翻边法兰。测量对象为腐蚀性液体,大量程为四氟杆6米、四氟杆25米。
导波式雷达液位计是我公司生产的采用微波技术来检测料位的高科技产品,该仪表充分利用了微波具有很好穿透性、对恶劣环境及被测物料适应性强等特点,采用世界上先*的大规模集成电路,将雷达原理、数字信号处理技术和傅里叶变换(FFT)技术。采用连续式乍动测量,能测量液体、固体(块状、粉状)料位,具有测距远、精度高等特点。
一、工作原理:
导波雷达液位计发出的高频微波脉冲沿着探测组件(钢缆或钢棒)传播,遇到被测介质,由于介电常数突变,引起反射,一部分脉冲能量被反射回来。发射脉冲与反射脉冲的时间间隔与被测介质的距离成正比。从而计算出探测组件顶部被测介质表面的距离,被测容器总高度是已知数,进一步可得出介质的物位高度。
二、主要特点:
导波雷达液位计具有低维护,高性能、高精度、高性,使用寿命长等优点。在与电容,重锤等接触式仪表相比较,具有*的*性。微波信号的传输不受大气的影响,所以它可以满足工艺过程中挥发性气体、高温、高压、蒸汽、真空及高粉尘等恶劣环境的要求。
三、技术参数:
1.测量对象:腐蚀性液体
2.测量范围: 杆式6m、缆式25米;
3.过程连接:法兰DN50,DN80,DN100,DN150;
4.介质温度:-40~120℃;
5.过程压力: -0.1~2.0MPa;
6.工作频率: 100MHz~1.8GHz;
7.测量精度: ±10mm;
8.分辨率: 1mm;
9.采样: 回波采样54次/s;
10.输出电流信号:4~20mA+ HART通讯协议;
11.电源: 24VDC(±10%)纹波电压:1Vpp;
12.耗电量: max22.5mA ;
13.外壳防护等级:IP68;
14.防爆等级:EXiaIICT6 ;
15.两线制接线:仪表供电和信号输出共用一根两芯电缆;
16.电缆入口:M20×1.5(电缆直径5~9mm)。
新产品的出现,在一定程度上会让我们忽视原先的产品。智能就是那个被忽视的产品。智能雷达物位计,我们可以称为低频版雷达物位计,它的发射频率为6GHz,其原理也是基于时间间隔原理设计的。
目前来看,智能雷达物位计是连续测量方式。它适用于腐蚀性液体的测量、有挥发性质液体的测量以及温度压力变化大液体的测量。它的天线主要有三种,即棒式天线、喇叭口天线和全密封天线。天线不同,智能雷达物位计在罐内的安装也略有不同。
一般来说,三种天线在罐内安装的时候,尽量要与介质保持垂直,避免波束指向罐壁。这是三种天线安装的共性。此外,三种天线在安装的时候,还各有其特性。
就棒式天线而言,为了减小温度对雷达物位计的影响,对接法兰连接处使用弹簧垫圈且天线发射点伸出安装短管。
就喇叭口天线而言,喇叭天线也伸出安装短管,必要的时候可以使用天线延伸管。
说完了雷达物位计天线,我们再说一下产品的安装问题。为了提高雷达物位计的准确性和稳定性。安装时,我们要注意以下几个方面:
,连接雷达物位计之前,我们要确认罐内无有害介质,无压力。
第二,选择合适的位置拧紧螺纹或者固定好法兰。如果有必要,需更换密封圈。
第三,进行液位调整时,我们要选择空罐的时候或液位刚好覆盖罐底的时候。
未来,随着技术的发展,新产品的出现,智能雷达物位计可能在市场并不占据一定的优势,但是,小编要提醒大家的是,每一款产品都有其优势,大家在选择的时候一定不要盲目,看更多产品,了解更多型号,才能让我们选择到经济实惠且性能的产品。
GJ05R83雷达物位计生产厂家
压力变送器高端化发展将促进行业高速迈...
随着我们经济的复苏,人工成本的增加,中低档的压力变送器产品出口的价...
如何处理调试差压变送器无输出的故障
我们都知道差压变送器的应用是广泛,一般情况下,用于管道中的介质直接...
智能压力变送器的特点及故障判断
介绍智能压力变送器概念以及特点。可以对测量数据进行计算、存储和数据处理,还...
差压变送器的迁移故障分析
在工业生产中应用西亚差压变送器测量液面时,如果差压变送器的正、负压室与容器的取压...
压力变送器无输出的时候怎么办?电源、...
当现场压力变送器无输出的时候,我们 先需要判断是哪里出了问题,而是草率地认...
浅谈压力变送器的常见故障及解决措施
压力变送器是工业实践中的常用传感器,压力变送器发展至今已经取得...
压力变送器安装前的注意事项
在安装使用压力变送器前应详细阅读产品样本及使用说明书,安装时压力接口不能泄...
差压变送器的安装注意事项
差压变送器与差压源之间导压管的长度应尽可能短,一般在3~50m范围内,其内...
什么是双法兰式液位变送器及原理
什么是双法兰式液位变送器:
双法兰式液位变...
雷达物位计有哪些常见类型?
调频连续波型雷达物位计
相对于脉冲回波时间差方式的测量原理,调频连续波型液位雷达采用FMCW(频率调制/连续波)体制,可以达到计量级的测量精度。
调频连续波型液位雷达工作原理
其工作原理安装在罐顶雷达液位计通过天线向液面发射经频率调制的电磁波信号,被测表面返回的信号被发射天线接收,并与天线发射的瞬时频率信号比较。由于信号的频率按照一定规律不断变化,因此比较信号频率与天线到液面的直线距离成比例。
综合测量信号与油罐形状参数,进行几何处理,就可以得到的液位高度和剩余量信息。
脉冲型雷达物位计原理
雷达物位计天线发射窄的微波脉冲(例如:6G频率雷达,即:发送一个△t时间(一般为1ns)的脉冲,叠加6GHZ的正弦波信号),这个脉冲以光速在空间传播,碰到被测介质表面,其部分能量被反射回来,被同一天线接收。发射脉冲与接收脉冲的时间间隔与天线到被测介质表面的距离成正比。
由于其发射脉冲与接收脉冲的时间间隔小,一般都采用时间拓展技术,并采用多次测量求平均的方法获得结果;这种测量技术决定了其精度为5~10mm。
脉冲雷达由于采用微波脉冲信号,是间断性发射脉冲方式,所以,脉冲雷达可以做到功率比较低,一般为0.5W内。可以很方便的实现本安设计。在设计中大都采用大电容充电方式,等电容充电到一定容量后,进行一次微波脉冲信号发射测量。这种设计方式决定了其在料位变化率比较快的情况下,会出现锁波现象。