RDYB-G26F10A雷达料位计生产厂
技术发展趋势与创新方向
79-81GHz频段开放使角分辨率提升至0.5°,可识别小型障碍物。MIMO技术通过4×4天线阵列实现三维物位成像,实验室精度达±1mm。太赫兹雷达(300GHz)正在研发,适用于纳米粉体测量。AI驱动的自适应滤波算法能自动优化回波处理参数,调试时间缩短90%。数字孪生技术实现虚拟传感器校准,预测剩余寿命准确率>95%。2025年将普及的5G工业物联网(IIoT)版本,支持毫秒级刷新率与云端协同控制。
导波雷达液位计在工业生产中经常被用到,因其的性能被大众所接受,它有维护成本低、检测性能强、测量精度*、性高、使用年限长等优点。设备的所发射出的信号不受环境、大气等影响,所以可在多种介质中使用,比如高温、高压、蒸汽状态、挥发性气体、粉尘、真空环境等。
多种条件下使用导波雷达液位计反馈上来的使用数据得出,可连续供电作业*度高,相比其他液位计不用经常人为维护。今天笔者要和大家分享的是如何在锅炉中使用导波雷达液位计,锅炉内高温、高压需要利用液位计测量内部的液位情况来其。利用导波雷达液位计可解决、读数准确、维护简单几种解决的问题。
在某些锅炉上,每台锅炉安装至少需要安装两个相互独立的水位表,所以每台锅炉也需要配置两个导波雷达液位计。这样才可以符合锅炉运行的要求。导波雷达液位计需要利用石英管来观察炉中的液位变化,但连接管道和阀门需要打开,来提高检测*度。安装的时候需要探头、传感器的干燥清洁,如果发生污染不可以用湿毛巾擦拭,需用酒精去污。
虽然许多城市还没有关于锅炉液位计的标准规定,但至少需要安装一个直观的液位计,并搭配安装观测的导波雷达液位计。如果是大型复杂的锅炉成套设备还需要重新设计规划导波雷达液位计,根据设计图来安装。
一般情况下锅炉用的导波雷达液位计有这几种故障:
2.探头、传感器故障,遇到这种情况就需要重新调整设备的高度,检测几组数据之后确定位置。
3.天线等受污染或外力损坏。受污染的天线可以用酒精清洗。外力损坏的就需要更换配件,重新调试后使用。
导波雷达液位计主要由雷达变送器、过程密封件和导波杆三部分组成。表头内部安装雷达变送器,采用一次压铸成型的双室结构,带LCD显示,大多数情况下可以向任意方向旋转,便于现场观察。根据不同的环境条件选择相应表头材质,常规条件下可以选择聚氨酯涂层,沿海地区可以考虑316ss等耐腐蚀性不锈钢。导波杆共分为两 类五种,即硬杆类,包括同轴、单杆和双杆三种;软缆类,包括单缆和双缆两种。
导波雷达液位计配备不同的探头,以满足各种应用要求。硬杆类导波雷达液位计测量范围较小,制造商推荐可选范围一般在0~6m,而软缆类导波雷达液位计测量范围较大,制造商推荐可选范围通常在0~50m内,甚至可以达到80m,所以导波杆长度可根据测量要求,自由定制选择。
硬杆类中的单杆式探头能量传输效率较低,外界干扰敏感,是受物体接近程度影响较大的探头,应避免靠近干扰物安装,如设备内壁或容器内构件等。适合测量小量程的液体和粉末状或小颗粒固体料位。
同轴式探头能量集中在小口径的金属管内,能量传输效率高,不受液面湍动的影响,抗干扰能力强,安装空间要求低,可以近容器内金属构件安装或者与其他物位仪表装在同一旁通管内,且不会相互影响。其结构特点决定了其更适用于低黏度的清洁介质,介电常数液体或界位测量,而在挂料和结晶的应用场合容易产生测量误差,因此不适用高黏度的、易挂料、易结垢的场合的物位测量,如重油型加工处理装置中的原料罐、地下污油罐等。
软缆类中的单缆式探头底部配有重锤,主要用于测量大量程的液体和固体料位。硬杆类型中的双杆、软缆类型中的双缆与单杆、单缆相比,增加为平行双探头,导波雷达液位计能量集中在两个探头之间,测量能力,抗干扰、抗黏附能力高于单探头,灵敏度低于同轴探头。
RDYB-G26F10A雷达料位计生产厂
德国E+H导波雷达液位计FMP52
FMP51 带涂层的探杆,适用于腐蚀性的介质的液位测量
应用
• FMP51 - Premium 仪表,用于液位测量和界面测量
• FMP52 - Premium 仪表,带涂层探头,用于腐蚀性液体的测量。接液部件采用
认和 USP Cl. VI 认材料
• FMP54 - Premium 仪表,主要用于高温和高压应用场合中的液体测量
• 较大量程:45 m (148 ft)
•
过程连接:3/4"螺纹,或法兰
•
温度范围:–196…+450 °C (–321…+842 °F)
•
压力范围:–1…400 bar (–14.5~5 800 psi)
•
提供下列系统集成接口:
– 4...20 mA HART (模拟量信号)
– PROFIBUS PA (Profile 3.02)
–
基金会现场总线(FF)
•
可以进行限位监控(低限(MIN)、高限(MAX)、量程范围内),具有 SIL 2 (单台仪
表测量)或 SIL 3 (同构冗余测量)等级,
通过 TÜV 认,符合 IEC 61508 标
准
优势
•
测量:
–
存在波动液面和泡沫液面时
–
介质类型改变时
–
存在粉尘的应用场合中(仅适用于 FMP54)
•
适用范围广
•
内置数据储存单元
•
工厂预标定探头长度
•
全中文显示的直观菜单引导式操作方法
•
便捷地集成至控制系统或资产管理系统中
• 准确的仪表诊断和过程诊断,有助于发现问题
•
防爆认:ATEX、IEC Ex、CSA、FM、NEPSI
压力设备指令(PED) (仅适用于 FMP54)
3A 认(仅适用于 FMP52)
物位,流量,压力,水分析测量测控:德国E+H,德国VEGA,北京瑞普三元压力传感器, 美国EMA流量传感器, 公众平台:西安宏略贸易有限公司。 水分析:CPM223,CPM253,CM442,CPS11,CPS11D等;物位计:FMR10, FMU30. FMU40等;压力变送器:P31 PMP11,PMC11,PMC131 等现货。
技术发展趋势与方向
79-81GHz频段开放使角分辨率提升至0.5°,可识别小型障碍物。MIMO技术通过4×4天线阵列实现三维物位成像,实验室精度达±1mm。太赫兹雷达(300GHz)正在研发,适用于纳米粉体测量。AI驱动的自适应滤波算法能自动优化回波处理参数,调试时间缩短90%。数字孪生技术实现虚拟传感器校准,预测剩余寿命准确率>95%。2025年将普及的5G工业物联网(IIoT)版本,支持毫秒级刷新率与云端协同控制。
导波雷达液位计原理
导波雷达液位计是一种非接触式的液位测量仪表,广泛应用于石油化工、电力、冶金、水处理等行业。它利用微波(或超声波)技术,通过发射和接收电磁波,检测液体表面与探头之间的反射信号,从而测量液体的高度。本文将详细介绍导波雷达液位计的原理及其优点。
一、导波雷达液位计原理
1. 发射原理
导波雷达液位计的发射原理是利用微波(或超声波)技术,通过天线向被测液体发射一定频率的电磁波。当电磁波遇到被测液体时,部分能量会被吸收,另一部分能量会反射回天线。反射回来的信号强度与被测液体的高度有关。
2. 接收原理
导波雷达液位计的接收原理是利用天线接收反射回来的电磁波。由于电磁波在空气中传播速度较快,因此反射回来的信号具有较强的时间延迟。通过对这些信号进行处理,可以计算出电磁波从发射到接收所需的时间,从而推算出液体的高度。
3. 数据处理与显示
导波雷达液位计的数据处理主要包括对反射信号的时间延迟进行计算和处理。根据电磁波传播速度和传播距离的关系,可以计算出液体的高度。同时,导波雷达液位计还可以将测量结果以数字形式显示出来,方便用户进行实时监控和调整。
二、导波雷达液位计的优点
1. 非接触式测量:导波雷达液位计无需与被测液体直接接触,避免了传统液位测量方法中可能出现的污染、磨损等问题。
2. 高精度测量:导波雷达液位计采用的微波(或超声波)技术,能够实现对液体高度的测量,误差范围通常在±0.1%以内。
3. 适用范围广:导波雷达液位计可用于各种类型的液体测量,如水、油、酸碱等,且不受介质密度、温度、压力等参数的影响。
4. 抗干扰能力强:导波雷达液位计采用的信号处理技术,能够在复杂的环境中稳定工作,不易受到外部干扰的影响。
5. 易于安装和维护:导波雷达液位计结构简单,安装方便,维护成本较低。同时,其无易损件,使用寿命长。
总之,导波雷达液位计凭借其非接触式测量、高精度、抗干扰能力强等优点,在各行业得到了广泛的应用。随着科技的不断发展,导波雷达液位计的性能将进一步提高,为人们的生产生活带来更多便利。
RDYB-G26F10A雷达料位计生产厂
导波雷达液位计在检测液位时采用的是时域反射(TDR)原理,信号的传输介质是同轴电缆和导波杆,可以认为导波雷达液位计进行液位检测是基于传输线的特性的。以下简要介绍 TDR 的原理。
同轴电缆和导波杆是比较常用的信号传输线,我们可以把它等效为理想的双导线传输线,由相同的很多小的部分组成,每个小的部分又由很多的电阻 R、电容C、电感 L 和电导 G 等元件一起组成,并且同轴电缆和同轴导波杆的特性阻抗在每处都是一样的。
同轴电缆等效传输线原理图如图 2-1 所示。
图 2-1 同轴电缆等效传输线原理图
由上图知道,如果同轴电缆与其他介质相接触,由于介电常数(这里用rε 来表示)是不同的,会使相接触部分的等效阻抗发生一定变化。当同轴电缆的某一端发射出脉冲信号时,脉冲信号会沿电缆进行传输。如果传输中没有与其他介质的接触时,那么对应的负载阻抗和电缆的特征阻抗相等,那么脉冲会被吸收因此没有回波信号产生;如果发生与其他介质的接触时,那么对应的负载阻抗就会发生变化,使之和特征阻抗不相等,就会产生回波信号。
这里定义一个反射系数为 ρ ,它是反射信号与发射信号的幅度的比值,我们用它来用来表示负载阻抗和特性阻抗的关系。
其中:tZ 表示任意一点的阻抗,cZ 表示特性阻抗。因此,在各种情况时阻抗和反射系数的不同如下所示:1.当同轴电缆传输正常时,那么t cZ =Z
, ρ =0 ,发射脉冲会被吸收,没有回其中:tZ 表示任意一点的阻抗,cZ 表示特性阻抗。因此,在各种情况时阻抗和反射系数的不同如下所示:
1.当同轴电缆传输正常时,那么t cZ =Z , ρ =0 ,发射脉冲会被吸收,没有回
图 2-2 断路回波信号示意图
3.当同轴电缆传输短路(即为与其他介质接触时)时,那么tZ =0 , ρ = −1,同样产生全反射,但是短路回波信号和发射信号具有相反的性,短路回波示意图如图 2-3 所示。
图 2-3 短路回波信号示意图
当脉冲信号在导波杆上传输时,如果碰上其他介质就会使该点的阻抗变化,从而反射系数也会发生变化,会产生回波信号。我们可以进一步计算发射脉冲和回波脉冲的时间差就能计算出发射电路到该介质接触点的距离。
导波雷达测量系统原理:
导波雷达液位计就是时域反射原理来进行测量的,测量过程我们分为信号传播和整个测量系统来作介绍。
导波雷达信号传播示意图如图2-4所示。
在机械机构上,仪表的表头内部的收发电路会通过同轴射频接插件和同轴电缆相连。同轴电缆的另一端将会在法兰的位置与同轴导波杆连接。导波杆则是直接插入到罐体的介质内,导波杆的末端与罐底底部则是有一段距离的。
根据左图可以看到,电路板输出的脉冲信号会通过同轴电缆,再在同轴导波杆上进行传播。由2.1节的介绍,在同轴电缆和导波杆的连接处会首先发生断路,进而一部分信号会产生一个顶部回波信号,但是仍有一部分信号还会继续沿导波杆传播。当信号与被测液体表面接触时,其阻抗特性会发生变化,其一部分也会被反射,会再产生一个真正的液位回波信号。也会有另外一部分信号仍然会继续向下传播,***终会损耗在不断发射中。液位计可以判断出液位回波和顶部回波之间的时间差,根据这个时间差,我们用单片机进行计算就可以得到液位的高度。
根据右图所示,在罐体为空的时候,没有液位就不会发生液位回波信号,但是仍然会有顶部回波信号,而且在导波杆的底部会断路而产生一个的底部回波信号‘。
假如罐体内有两种不同的介质,由于密度不同这两种介质会分别存在于液体的上部和下部。如果这两种介质的介电常数大不相同,那么就可以通过回波的不同来判断两种介质的分界面,进而也可以得出这两种介质的不同高度。由于脉冲信号是通过导波杆传播,导波杆上的空气、气态的凝结不会影响性能,因此可以长时间测量低介电常数的产品。一般情况下被测液体的介电常数越大回波信号也就越强,也就更容易检测出液位,比如水比丁烷更容易测量。
假设电磁信号在介质中传输无损耗,则信号在其中的传播速度可以表示为:
其中:c为电磁波在真空中的传播速度(3×10八立方米m/s)。
Y为介质的相对介电常数,
从为同轴电缆的相对磁导率(大多数液体其近似等于l}o
我们可以得到:
若电磁波在同轴导波杆上的传播距离为L,那么回波信号的传播时间为:根据这个实际传播速度结合时间就可以计算出液位[[19]。因此,的深度:
L可以表示为液位因罐体高度为H,***后得到的液位高度为:
h=H一L导波雷达测量系统示意图如图2-5所示。
图中为整个导波雷达测量系统,导波雷达液位计发送的是窄脉冲信号,对刚性杆***大测量范围为6.1 m,柔性杆为***大范围则为30m。在实际测量中,在量程的上部和下部都会存在一段死区,分别为上部死区和下部死区,其长度分别为Lz和L,,这两个死区的特性是非线性的,所以造成测量误差会偏大。我们把上部死区的较低点定义为上参考点,用它来代表液位的满点(***高可测点)和20mA输出电流。下部死区的***高点则定义为下参考点,用它来代表液位的零点(较低可测。
点)和4mA输出电流。在导波杆末端到罐底的距离为L。
由此,在实际应用时,液位的计算需要考虑到上部死区和下部死区的因素。在液位显示时需要加上杆末端距离罐底的距离L。和下部死区的高度L1 [21] o
一般液位测量时只需要测量一定范围内的高度,即有效量程为两个死区之间的高度,也叫线性区。
在罐体内实际显示的液位高度(即以下参考点作为零点)为:
hD = h一L。一L, 这里L+L、是液位的整体迁移量。
本章主要是对导波雷达液位计进行了理论分析,首先介绍了导波雷达液位计测量所需要的时域反射原理,接着详细讲述了导波雷达测量系统的原理,***后则概括了本课题所设计的导波雷达液位计所要实现的功能和特点。