HLRD902雷达物位计质量好的
智能诊断与预测性维护功能
集成自诊断系统实时监测天线污染、元件老化等状态,信号质量指数(SQI)<70%触发警报。某粮仓应用使故障停机减少60%。温度漂移补偿确保长期稳定性0.01%/年。边缘计算在本地完成95%数据处理,仅上传关键参数。通过分析历史回波曲线,可提前2周预测介质特性变化导致的测量偏差。
德尔信DX-DB 杆式液位变送器0-25m 0.2不锈钢 四氟乙烯 24v4-20(mA) 各种液体 导波雷达连续物位仪表,产品适用于大多数应用场合的连续测量。仪表广泛用于工业和民用现场化工、石油等,无论室内和户外,本仪表相对其他形式仪表,对现场安装条件均无要求,可测液位、界位油水分离等。仪表由一个电路单元,一套防爆外壳和杆式或缆式传感器组成,传感器可选多种材质,可整体或分体式安装。
性能
性能 传感器材质:
电源: 316SS-316不锈钢
两线制标准24VDC TFE-特氟隆
(11.5~36VDC) PFA-聚氟代丙烯酸酯
输出: FEP-聚四氟乙烯
4-20mA CS-碳钢
环境温度: 陶瓷
-40~70℃ 外壳防护:
介质温度: IP66
-185~280℃, 防爆区域等级:
260℃以上,向公司查询 电缆和传感元件
负载: 在1区、2区组别本质。
24VDC@625Ω 两线制的电子单元
响应时间: 在1区Ⅰ、Ⅱ、Ⅲ级C、D、E、F、G组本质
标准:20毫秒 在1区Ⅰ级A、B、C、D组为防爆型(分体式)
可选:0~30秒可调 在1区Ⅱ级E、F、G组和Ⅲ级为防粉尘燃烧型
: 在2区Ⅰ级A、B、C、D组为非燃烧型。
标准条件下±0.5% 传感器安装:
负载影响: NPT螺纹(标准)
0-负载变化0.2% 公制法兰及ANSI法兰(可选)
0引言污水处理工程一般包含污水预处理系统、生化处理系统、污泥处理系统三部分。污水预处理系统主要由进水泵、粗细格栅、砂水分离器等构成;生化处理系统是污水处理的核心,一般含沉淀、絮凝、厌氧、缺氧、好氧等工艺流程;污泥处理系统由污泥浓缩池、污泥脱水机等组成,包括污泥匀质、浓缩、脱水、处置四道基本工序。涉及液位(差)、流量、压力、温度、浓度(含PH、溶解氧等)、浊度等多种工艺参数的测量。其中液位测量占很大比重,在各个工艺阶段几乎都有液位检测点。测量介质包含水和溶液两种。溶液是指用于改善污水水质的溶液如:酸、碱等,一般纯溶液于储罐中贮存,混合溶液存于带搅拌器的混凝土池内。毋庸多言,水作为污水处理的对象,对其液位的检测数量是多的。相对其它工艺流程,污水处理工程的水位测量有它自身的特点:1)测量介质一般是含泥沙、油污等多种无机、有机污染物的污水,大多存于室外敞口池中;2)生化处理系统使用气浮工艺的水面上多存在泡沫;3)调节池、浓缩池等都设有搅拌器。相对于其他种类的测量仪表,适合污水处理工程使用的液位仪类型众多。有接触和非接触测量两类,涉及包括差压式、浮力式、电学式、声学式等多种测量原理的液位计。这对仪表的选择提供了很大空间,同时也带来了合理选型的难度。本文以实际使用普遍,数量多的磁翻板液位计、投入式液位计、超声波液位计和雷达液位计为例,结合原理,总结实际工作中液位计选型、安装、使用和维护的经验。1磁翻板液位计1.1测量原理磁翻板液位计主要基于浮力和磁力原理。带有磁体的浮子(简称磁性浮子)在被测介质中的位置受浮力作用影响。液位的变化导致磁性浮子位置的变化、磁性浮子和磁翻柱(也称为磁翻板)的静磁力耦合作用导致磁翻柱翻转一定角度(磁翻柱表面涂敷不同的颜),进而反映容器内液位的情况。1.2优缺点及注意事项1)显示清晰、读数直观,方便现场监控。2)一般选用带远传功能的磁翻板液位计,不需多组液位计组合,即可同时实现现场和操作室监控,设备开孔少。
3)测量介质脏污时,易堵。根据介质情况,应定期清洗主导管,清除管内沉积杂质。建议配套排污阀方便检修。若测量介质含腐蚀性时,须选用耐腐蚀的产品。4)如图1示,通常情况下,工艺与仪表的设计、维护以法兰为界,因此,须注意液位计法兰与工艺接管法兰配对。另外,液位计根部阀V1、V2属工艺选型或由储罐配套。为液位计检修时,不影响生产,V1、V2选用产品,故在储罐设计或采购时,仪表须向工艺提出要求。1.3使用位置在污水处理工程中多选用侧装式的磁翻板液位计,常用于需现场和操作室两地监控的位置,如酸罐、碱罐、部分罐液位检测。2投入式液位计2.1测量原理基于所测液体静压与该液体高度成正比的原理,采用多晶硅、陶瓷或电容压力传感器,将静压转成电信号。一般由直接投入液体中的、用于放大、校正、补偿、结果显示的变送器和导气或连接电缆(传感器与连接)三部分组成。2.2优缺点及注意事项1)结构简单,价格较便宜。2)传感器直接投入被测液体内测量,因此不受介质起泡影响。3)由于传感器与变送器间为柔性连接,仪表贮存及运输方便,尤其在大量程的液位测量中,其优势更突出。安装方便,只需将传感器直接投入被测液体,即可实现测量。4)水流冲击、摩擦振动(尤其是与液位变化同方向的振动)等因素会改变投入式传感器在液体中的位置,进而影响测量值,所以好将液位计安装于水流相对平稳的地点。受现场条件制约,无法避免时,好将传感器置于隔离管中安装或选择其它种类的液位计。图2为加装隔离管的投入式液位计在某调节池中的应用示例,使用隔离管避免了因搅拌器工作引起的水流冲击,了测量的正确率。5)使用于水质过差的环境时,传感器套孔易被污泥堵塞,导致测量值失真,需酌情定期清洗维护。为减少套孔被污泥堵塞的概率,建议将其安装于离池底大于100mm的位置,并使用隔离管。6)使用寿命较短。使用一段时间后,易出现零点或量程漂移,现场校准有难度。2.3使用位置虽然投入式液位计存在使用寿命较短,传感器易堵等缺点,但由于它在价格和安装维护方面的优点,尤其是价格方面,一般仅千元左右,相对于后文提到的超声波、雷达液位计一般需万元左右,有较大优势,目前仍是污水处理工程测量敞口容器液位使用较多的液位计之一。在上清液集水池、清水池、滤池等水质相对较好的工艺流程中使用时,寿命较长,几乎免维护。可以使用在水质差的环境中,但不适合池底淤泥层过厚的池内使用。加装隔离管后可应用于部分带搅拌器的调节池、浓缩池等。
3超声波液位计3.1测量原理超声波液位计是利用回波测距原理的非接触式仪表。回波测距原理又称行程时间或传播时间(TOF,Time ofFlight)测量原理。它是通过一个可以发射能量波(一般为脉冲信号)的装置发射能量波,能量波遇到障碍物反射,由一个接收装置接收反射信号。根据测量能量波运动过程的时间差来确定物位变化情况。由电子装置对能量波信号进行处理,转化成与物位相关的电信号。利用超声波作为能量波的液位计即是超声波液位计。其测量原理如图3示。液位高度计算公式如下:
其中,C为超声波在空气中的传播速度;t为超声波由液位计到水面往返一次的时间。由公式可见,液位高度受超声波传播速度的影响。而超声波是利用气体(大多数情况下是空气)作为传播介质,空气的压力(真空度)、温度、湿度、气流等变化会改变超声波传播速度。例如,超声波速度与温度的近似公式为:C= C0+ 0.607× T式中,C0为零度时的声波速度332m/s;T为实际温度(℃)。可见,温度变化会产生液位测量误差。超声波液位计的超声放射及接收装置均安装于同一探头中,这就决定了只能在发射引起的传感器余振基本消失后,接收装置才能检测反射回波。另外,超声发射是以脉冲方式进行,而脉冲具有一定的时间宽度,因此,在超声发射到余振基本消失的这段时间t'内,液位计不能正常工作,这段时间对应的液位
B称为盲区,如图3示,被测的高液位如进入盲区,仪表将不能正确检测。盲区大小取决于发射装置的功率。一般而言,发射装置功率越大,发射频率就越低,余振衰减时间越长,盲区也就越大。3.2优缺点及注意事项1)具有工作、精度高、使用周期长、免维护的特点,并具有相对的价格优势。2)在污水处理工程中,多可选用一体式液位计,安装简便。3)回波反射产生的干扰回波和假回波,可通过软件来排除,但有效回波强度也同时被衰减。因此,设计选型时,要考虑衰减因素,选择量程要留有一定的余量。4)为了尽量减少干扰回波,安装位置要尽可能选择液面平稳的位置,同时远离扶梯、检修通道、进水口、出水口、搅拌器,尽可能与池壁保持较远的距离。在探头规定的波束发射角下,锥形波束在测量液面上的投影,不与容器壁及其它能反射声波的构件接触。在避开盲区的前提下,尽量贴近高液面安装,以减少池壁回波的干扰。为获得尽可能强的回波,要探头与被测界面垂直。5)首次投运,须对仪表进行使用位置、介质特性、工艺条件等内容的设定,完成空程、满量程校正。利用配套软件进行回波曲线检查,抑制干扰回波。建议在有条件的情况下,在池壁上分别标注液位满量程的20%、50%、95%、三点,以方便今后维护和校验。6)为避免因压力、温度等特性变化而产生的液位误差,应选择有温度补偿的产品。7)泡沫是声波反射不充分的表面,会吸收一部分或是的声波脉冲能量,减少或是消除回波信号。因此,在被测液面存在泡沫的场合,不能使用。但在泡沫较轻,盲区允许的情况下,可通过加大液位计的功率,来实现测量。
3.3使用位置超声波液位计不能使用在测量工况变化剧烈或真空的场合,但污水处理工程一般不存在上述情况,这一优势使超声波液位计在污水处理工程中得以广泛应用。除了不能使用在有大量泡沫、液位波动剧烈的地方外,几乎可在污水处理的各个工艺流程中广泛使用,用于测量水池液位、液位差等。4雷达液位计4.1测量原理超声波、雷达液位计都是利用回波测距原理的仪表。利用电磁波作为能量波的液位计即是雷达液位计,又称微波液位计。雷达液位计按结构可分为天线式和导波式。天线是通过天线发射和接收电磁波,其结构与超声波液位计为相似,都属于非接触式仪表。导波式是微波液位计的一种变型,英文名称是Time DomainReflectometry(时域反射法)或简称TDR,也俗称导波雷达,通常采用脉冲波方式工作。与微波液位计不同点在于微波脉冲不是通过空间传播,而是通过一根(或两根)从液位上方伸入、直达容器底的导波体传播。导波体可以是金属硬杆或柔性金属缆绳。微波脉冲沿杆或缆的外侧向下传播,在被测液面上被反射,回波被天线接收,由发射脉冲与回波脉冲的时间差即可计算出传播距离。低频雷达具有较大的波束角和较长的波长,使之在有液面扰动或搅拌的情况下能提供好的回波曲线。但其较大的波束角制约了使用范围。为弥补这一缺陷,在实际产品中,低频雷达多与导波管结合。也就是说,一般导波雷达液位计多使用低频雷达。4.2优缺点及注意事项由于雷达液位计与超声波液位计在测量原理上相同,本文3.2中1~ 5同样适用于雷达液位计。但由于雷达液位计的性,和超声波液位计相比较,还有以下特点:1)由于微波(电磁波)传播不依赖介质,所以雷达液位计不受介质特性如压力、温度、真空度等影响,所以测量精度较超声波液位计高。可以使用在工况变化较大或有蒸汽等超声液位计不能正常工作的场合。2)微波(电磁波)以光速传播,使得雷达液位计测量更灵敏,刷新速度更快。
3)表1示出了不同特性的泡沫,对微波、超声波信号的不同影响。由于污水处理工程液位测量所涉几乎全是湿性泡沫,所以雷达液位计可代替超声波液位计在液面有泡沫的场合使用。4)使用导波雷达,可在带搅拌、液面扰动等复杂工况或安装空间有限的场合实现测量。导波雷达液位计安装在有搅拌器的液体中,若液体流速过快,建议将导波管末端固定,以减少导波管受力。5)部分产品配套有智能软件,可实现不规则池底的液位测量。6)雷达液位计比超声波液位计价格稍贵。4.3使用位置由于雷达液位计在有泡沫、带搅拌的测量场合具有优势,它弥补了超声波液位计在上述方面的不足。可以说,雷达液位计适合在污水处理的各个工艺流程中使用,测量水池液位、液位差。5结语是污水处理工程不可缺少的重要仪表。它种类繁多,根据介质和现场条件的不同,各类液位计各具优势,形成一个多元化的面。要找到适合的产品,只有在液位计选型、安装时,根据各液位计的特点,从测量介质、安装位置、仪表精度、价格、使用寿命、维护成本等多方面综合考虑。随着劳动力和生产成本的不断提高,仪表高精度、免维护性在仪表选型中所占的比重也随之不断增加。因此,在仪表采购成本允许的情况下,建议尽量选择精度佳、免维护的仪表。相对于磁翻板液位计和投入式液位计而言,超声波、雷达液位计更符合上述要求。随着电子技术及制作工艺的不断提声波、雷达液位计的价格会不断下降,性能会不断提高,数量会不断增多。
HLRD902雷达物位计质量好的
导波雷达液位计
型号:KQ-DLDA
应 用: 液体、固体粉料
测量范围: 30米
过程链接: 螺纹、法兰
过程温度: -40~250℃
过程压力: -0.1~2Mpa
精 度: ±3mm
频率范围: 100MHZ~1.8GHZ
防爆/防护等级: Exib IIC T6/IP67
信号输出: 4~20mA/HART(两线)
导波雷达液位计是接触式物位测量,采用时域反射技术(TDR)电子单元发射微波脉冲沿着导波杆(缆)传播,当接触被测介质时,产生反射信号由电子部件接收,计算发射到接收的间隔时间,转换为被测介质的距离。导波雷达液位计测量原理如图1所示。通过测量发射脉冲与反射脉冲的时间差,并通过以下公式即可计算出被测物质到仪表法兰的距离:2D=Ct (1)
式中:C为光速;T为发射脉冲与反射脉冲时间差;D为空间距离。
根据设定的满罐和空罐位置,通过以下公式即可计算出物料高度并输出4~20mA电流:
物料高度:L=E-D(2)
输出电流:Io=4+L×16/E (3)
式中:L为物料高度;E为量程。
导波雷达液位计适合测量液/液界面,如油水界面,油与水、油与酸、低介电的有机溶剂(甲苯、苯、环己烷、己烷、松节油和二甲苯)和水或酸。测量液/液界面应注意以下几点:
(1)介电常数较低的介质位于上部。
(2)两种液体的介电差异不低于10。
(3)上层介质的介电常数是已知的,该参数可在现场确定。
(4)上层介质的大厚度取决于其介电常数。
(5)上层介电常数下限<3,下层介电常数上限>20。
(6)可同时进行液位测量和界面测量。
导波雷达液位计可用在几何尺寸小的容器,也可用在旁通管和各种尺寸的储罐,适用于测量多种粉尘和谷物等。导波雷达液位计测量特性:
(1)无可活动机械部件,维护成本低。
(2)安装方便,支持罐顶安装或旁路管顶部安装。
(3)适用于液面、界面和粉末状或小颗粒状固料的物位测量。
(4)不受介质密度和pH值等物理参数变化的影响且无需进行补偿。
(5)适用于高温、低温、蒸汽和高压场合。
导波雷达液位计使用过程中微波沿导波管向下传导,尽量避免导波杆周围出现金属干扰或物料堆积的情况发生。导波雷达有的诊断功能,具有检测导波杆聚积物的能力。导波雷达液位计的结构由3个部件组成,即雷达变送器、过程密封件和导波杆。过程密封件和导波杆使得低能脉冲微波以光速沿其向下发送,在导波杆与物位(气/物、气/液或液/液界面)的交点通过导波杆被反射回雷达变送器。雷达变送器接收导波杆的测量信号,然后对这些信号进行处理并提供稳定的输出信号。
嘉可仪表JK系列雷达液位计种类,主要有缆绳式导波雷达液位计、杆式导波雷达液位计、喇叭口天线型雷达液位计、防腐四氟型雷达液位计、水滴型天线雷达液位计、卫生型平板雷达液位计、PFA桶天线雷达液位计、水利雷达液位计、高温型雷达液位计、高频雷达液位计、调频波FMCW型雷达液位计等。
ZPRD701导波雷达液位计既可以测量液体,也可以测量固体,是基于时间行程原理的测量仪表,雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。探头发出高频脉冲并沿缆绳传播,当脉冲遇到物料表面时反射回来被仪表内的接收器接收,并将距离信号转化为物位信号。可发出高频率微波,沿着探杆传播,由于遇到被测介质,介电常数突变,引起反射。发射脉冲与反射脉冲的时间间隔与被测量介质的距离成正比。同时,导波雷达也可以测量两种不同介质的界面,充分利用介质的介电常数的不同。但测量条件是上层介质不导电,或其介电常数比下层介质介电常数小10倍以上。脉冲的工作方式可测小介电常数介质,并适用于各种金属,非金属容器内,对人体及环境无伤害。导波雷达物位计可采用螺纹连接,螺纹的长度不要超过150mm,还可以采用在短管上安装。理想的短管直径小于150mm,高度小于150mm,若安装于较长的短管上,应底部固定缆绳或选用对中支架以避免缆绳与短管末端接触。当仪表需要安装于直径大于200mm短管时,短管内壁产生回波,在介质介电常数低的情况下会引起测量误差。因此,对于一个直径为200mm或250mm的短管,需要选一个带“喇叭接口”的法兰。尽量避免安装在直径大于250mm的短管上。导波雷达物位计无论是缆式或杆式若想仪表工作正常,过程连接表面应为金属。当仪表装在塑料罐上时,若罐顶也是塑料或其它非导电材质时,仪表需要配金属法兰,若采用螺纹连接,需配一块金属板。
ZPRD701导波雷达液位计
ZPRD701导波雷达液位计应用:煤堆、原煤仓、燃料仓、蓄水池、废气净化罐、仓泵、灰库、油箱等;原油或成品油储罐、三相分离器、沉降罐、污水罐及油水界面、钻探泥浆罐等;原油蒸馏塔、原料和中间料仓、反应罐、氨水罐、固体料仓、分离器等;矿石料仓、矿石粉碎机、原料仓、辅料仓、高炉、氧化铝粉仓、电解池缓冲罐等;石料仓、生料仓、水泥仓、煤粉仓、炉渣存储仓等;蓄水池、污水池、水处理罐、沉淀池、深井、饮用水网络等;原料仓、储料塔、干燥鼓、化学物料存储仓等;采石场、食品、制、、造船等行业等.
ZPRD701导波雷达液位计技术参数:
参数: 工作频率:6.8GHZ
测量范围:缆式:0-30m;杆式、同轴式:0-6m
重复性:±0.1% ±0.2% ±0.3% ±0.5%
分辨率:1mm
采样:回波采样55 次/s
响应速度:>0.2S(根据具体使用情况而定)
输出电流信号:4-20mA
精度:<0.1%
通讯接口: HART 通讯协议
过程连接: G1½A/G2A/1½NPT
法兰DN50,DN80,DN100,DN150
过程压力: -1-40bar
电源: 电源:24VDC(±10%)
纹波电压:1Vpp
耗电量:max 22.5mA
环境条件: 温度-40℃~+80℃
防爆/防护等级: EXiaIICT6/IP68
两线制接线: 仪表供电和信号输出共用一根两芯屏蔽电缆线
电缆入口:2个M20×1.5(电缆直径5--9mm)
型 号ZPRD701ZPRD702ZPRD703
应 用适用于大量程。可测固体和液体介质。适用复杂测量,液体和固体颗粒状介质,大粉尘环境适用于固体和液体介质测量, 粉状颗粒介质。固体、液体测量,可用于介电常数比较小的液体。测量范围0~35米0~6米0~6米连接方式螺纹(G1-1/2″,1-1/2″NPT),法兰(DN50/80/100/150)料仓开口螺纹(Φ40),法兰(DN50Φ60/ DN80Φ90/ DN100Φ110/ DN150Φ160mm)工作温度-40~350℃工作压力-1.0~4.0MPa精 度0.1%±1mm(顶部盲区300mm)采 样回波采样 55次/秒防爆等级EXiaIICT6/ExdIICT6防护等级IP66/IP68信号输出两线4~20mA/HART或三线4~20mA天线材质不锈钢电 源电源:24VDC(±10%);波纹电压:1Vpp; 耗电量:zui大22.5mA环境温度-40~80℃电缆接口M20×1.5(电缆直径7--10mm)
导波雷达液位计
关键字:导波雷达液位计,液位计
HJRD32导波雷达液位计具有低维护,高性能、高精度、高性,使用寿命长等优点。在与电容,重锤等接触式仪表相比较,具有无可比拟的性。微波信号的传输不受大气的影响,所以它可以满足工艺过程中挥发性气体、高温、高压、蒸汽、真空及高粉尘等恶劣环境的要求。该产品适用于高温、高压、真空、蒸汽、高粉尘及挥发性气体等恶劣环境,可对不同料位进行连续测量。该仪器主要技术达到或优于国内外同类产品,且安装调试简便,可以单台使用,也可组网使用,可广泛应用于冶金、建材、能源、石化、水利、粮食等行业。
导波雷达液位计技术参数:
应 用:液体
测量范围:6米
过程连接:螺纹、法兰
过程温度:-40-250℃
过程压力:-0.1~2MPa
精 度:±3mm
频率范围: 100MHZ-1.8GHZ
防爆等级:Exib IIC T6 Gb
防护等级:IP67
信号输出:4—20mA/HART(两线)
导波雷达液位计特点说明:
特点:
1.可以测量介电常数大于等于1.4的介质。
2.一般用于测量粘度≤500cst而且不容易产生粘附的介质。
3.杆式雷达量程可以达到6米。
4.对蒸汽和泡沫有很强的抑制能力,测量不受影响。
5.对于介电常数比较小的液体物料可以采用双探杆式测量方式,以保障良好的准确测量精度。
测量原理
产品是基于时间行程原理的测量仪表,雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。探头发出高频脉冲并沿缆绳传播,当脉冲遇到物料表面时反射回来被仪表内的接收器接收,并将距离信号转化为物位信号。
输入
反射的脉冲信号沿缆绳传导至仪表电子线路部分,微处理器对此信号进行处理,识别出微波脉冲在物料表面所产生的回波。正确的回波信号识别由智能软件完成,距离物料表面的距离 D 与脉冲的时间行程 T 成正比: D=C×T/2 其中 C 为光速
因空罐的距离 E 已知,则物位 L 为: L=E-D
输出
通过输入空罐高度 E(= 零点),满罐高度 F(= 满量程)及一些应用参数来设定,应用参数将自动使仪表适应测量环境。对应于 4-20mA输出。
测量范围:
F---- 测量范围
E---- 空罐距离
B---- 顶部盲区
K---- 探头到罐壁的距离
顶部盲区是指物料高料面与测量参考点之间的小距离。
底部盲区是指缆绳底部附近无法测量的一段距离。
顶部盲区和底部盲区之间是有效测量距离。
安装位置:
1.尽量远离出料口和进料口。
2.对金属罐和塑料罐,在整个量程范围内不碰壁。如果是金属罐,物位仪表不要安装在罐的。
3.建议安装在料仓直径的1/4处。
4.缆式探头或杆式探头离罐壁距离不小于30厘米。
5.探头底部距罐底大约30mm。
6.探头距罐内障碍物距离不小于200mm。
7.如果容器底部是锥型的,传感器可以安装
8.罐顶,这样可以一直测量到罐底。
导波雷达液位计安装图:
图一(安装指南)
图二(导波管)
导波雷达液位计选型表:
仪表型号 探头类型 量程 材质
HJRD32 杆式探头 6000mm 不锈钢
HJRD32-防爆
P 标准型 ( 非防爆 )
I 本安型 (Exib Ⅱ C T6)
D 本安型+隔爆型 (Exd ib Ⅱ C T6)
HJRD32-杆式探头
A 6mm
B 10mm
HJRD32-过程连接/材料
G G1½"A 螺纹/不锈钢
GA G1"A 螺纹/不锈钢
N 1½"NPT 螺纹/不锈钢
NA 1"NPT 螺纹/不锈钢
C 法兰 DN50 PN16 C 型
D 法兰 DN80 PN16 C 型
E 法兰 DN100 PN16 C 型
F 法兰 DN150 PN16 C 型
H 法兰 DN200 PN16 C 型
K 法兰 DN250 PN16 C 型
Y 约定
HJRD32-密封温度
P 普通密封 /-40...100℃
G 高温密封 /-40...250℃带散热片
HJRD32-电子单元
2 (4 ~ 20)mA /24V DC 两线制
3 (4 ~ 20)mA /24V DC/HART 两线制
4 (4 ~ 20)mA /24V DC/HART 四线制
5 (4 ~ 20)mA /220V AC/HART 四线制
HJRD32-外壳/防护等级/天线防护等级
P 塑料 /IP65
L 铝 /IP67
HJRD32-电缆接口
M M20*1.5
N ½"NPT
HJRD32-编程/显示
V 带
X 不带
HJRD32-量程(mm)
备注:
相关信息