湖北物位帝智能装备有限公司
当前位置:供应信息分类 > 工程机械 > 起重机械 > 履带起重机

MRL-KP20-3BDM-GT20-0808/WXB雷达物位计厂家报价

MRL-KP20-3BDM-GT20-0808/WXB雷达物位计厂家报价 MRL-KP20-3BDM-GT20-0808/WXB雷达物位计厂家报价
  • MRL-KP20-3BDM-GT20-0808/WXB雷达物位计厂家报价
  • MRL-KP20-3BDM-GT20-0808/WXB雷达物位计厂家报价
  • 供应商:
    湖北物位帝智能装备有限公司
  • 价格:
    面议
  • 最小起订量:
    1件
  • 地址:
    湖北省武汉市洪山区青菱街道青菱大道青菱都市工业园联东U谷生态科技工业园
  • 手机:
    17720591218
  • 联系人:
    郭芬 (请说在中科商务网上看到)
  • 产品编号:
    222811102
  • 更新时间:
    2025-10-29
  • 发布者IP:
  • 产品介绍
  • 用户评价(0)
产品参数
  • 多样
  • 不限
  • 全国
产品优势
  • 湖北开物位帝能装备有限公司主要生产雷达物位计、雷达液位计、雷达料位计、传感器、防爆物位开关、射频导纳料位计、静电容液位计、、超声波液位计、磁翻板液位计、浮球液位开关、接近开关、光电开关、声光报警器、防爆接线盒、防爆按钮开关、防爆磁性开关、跑偏开关、拉绳开关、皮带防打滑开关、皮带纵向防撕裂开关、声光报警器、温度变送器、压力变送器、差压开关热电偶热电阻等产品

详细说明

  MRL-KP20-3BDM-GT20-0808/WXB雷达物位计厂家报价

  液体测量的特殊应用方案

  对于易结晶介质,传感器配备PTFE天线罩防止结垢,同时保持ε>1.4的介电常数要求。强腐蚀性液体测量采用全密封316L不锈钢外壳,耐98%浓硫酸腐蚀。某化工厂测量发烟硫酸(ε=110)时,通过调整回波阈值使信号强度稳定在-70dBm以上。最新导波雷达技术利用探杆引导电磁波,可穿透泡沫层检测真实液位。小型储罐(<3m)推荐使用5°窄波束天线,避免罐壁反射干扰。

  ULR80X 智能导波雷达液位计发射能量很低的短的微波脉冲通过天线系统发射并接收。雷达波以光速运行。运行时间可以通过电子部件被转换成物位信号。一种的时间延伸方法可以确保短时间内稳定和的测量。

  ULR80X 智能导波雷达液位计优势及应用

  1.雷达液位计可以测量液体、固体介质比如:原油、浆料、原煤、粉煤、挥发性液体等;

  2.可以在真空中测量可以测量介质常数>1.2的介质,测量范围可达70m;

  3.供电和输出信号通过一根两芯线缆(回路电路),采用4…20mA输出或数字型信号输出;

  4.非接触式测量安装方便采用其稳定的材料牢固耐用,分辨率可达1mm;

  5.不受噪音、蒸汽、粉尘、真空等工况影响;

  6.不受介质密度和温度的变化,过程压力可达400bar,介质温度可达-200℃至800℃;

  7.安装方式有多种可以选择:顶部安装、侧面安装、旁通管安装、导波管安装;

  8.调试可多种方式选择:采用编程模块调试(相当于一个分析处理仪表)、SOFT软件调试、HART手持编程器调试,调试起来方便快捷。

  智能导波雷达液位计现货供应技术参数:

  精度 液体:量程小于15m时,±0.1mm;量程大于15m时,测量值±0.2%

  固体:20mm±0.05%

  温度飘移 0.01%/℃

  重复性 1mm

  介质温度 -50~250℃

  法兰温度 -30~200℃/-30~150℃防爆型

  环境温度 -30~60℃/-30~55℃防爆型

  耐压 40bar

  表头显示 LCD可选

  标准输出 4~20mA/HART

  故障诊断输出 22mA

  供电 18~35VDC/ 小于28VDC防爆型

  外壳材料 铸铝还氧涂层

  防护等级 NEMA(IP68)

  防爆 ATEX II 1G 或II 1/2 D T 100℃ EEX ia II C T6...T3或EEX ia II B T6...T3

  重量 2Kg(无探头)

  注意事项

  1.测量范围从波束触及罐低的那一点开始计算,但在情况下,若罐底为凹型或锥形,当物位低于此点时无法进行测量。

  2.若介质为低介电常数当其处于低液位时,罐底可见,此时为测量精度,建议将零点定在低高度为C 的位置。

  3.理论上测量达到天线*的位置是可能的,但是考虑到腐蚀及粘附的影响,测量范围的终值应距离天线的*至少100mm。

  4.对于过溢保护,可定义一段距离附加在盲区上。

  5.小测量范围与天线有关 。

  本文旨在通过实践来探讨电厂低压给水加热器上液位的测量,并解析了加热器结构及其采用各种不同液位测量仪表的历程和工况特点,论述了导波雷达液位计在低压给水加热器上的使用优势,藉此给电力行业热工人士提供一些有价值的参考。

  给水加热器的结构与功能

  给水加热器是一种利用汽轮机抽汽加热给水,以提高热效率的加热设备,是电厂回热系统的重要辅机之一。加热器的工作原理是利用汽轮机做过功的乏汽加热凝结水和给水,而不是直接将乏汽排入凝汽器,以充分利用乏汽的焓,降低冷源损失,同时减弱锅炉受热面的热应力。

  加热器按汽水传热方式的不同,可分为表面式和混合式。目前,在火力发电厂中除了除氧器采用混合式加热外,其余高低压加热器均采用表面式加热。按照水侧的布置方式和流动方向的不同,表面式加热器又分为立式和卧式。

  表面式给水加热器的特点,是加热工质(汽轮机的抽汽)与被加热工质(锅炉给水)相互不混合,通过管壁来传递热量。传热管内是给水,传热管外是蒸汽。蒸汽在加热器里放出热量并凝结成疏水,由疏水口排出。由于加热蒸汽通常都具有一定的过热度,为使给水温度达到所期望的值,同时加热面积尽可能的少,可设置一个过热蒸汽冷却段,以充分利用抽汽的过热度。蒸汽由汽相变为饱和水,同时放出汽化潜热的过程是在凝结段里完成的。凝结段是给水加热器的主要换热区段,管内给水大部分的焓升是由这一区段提供的。因此,具有凝结段的加热器是电厂用给水加热器的基本型式。

  加热器中液位测量的重要性

  加热蒸汽和被加热的水之间是通过金属表面来传递热量的。由于传热热阻的存在,给水不可能被加热到蒸汽压力下的饱和温度,不可避免地存在着一个端差。因此,给水端差(TTD = Terminal Temperature Difference)和疏水端差(DCA = Drain Cooler Approach temperature difference)是加热器的两个主要。给水端差和疏水端差的设置,直接影响到机组的率和运行的性。给水端差又称为上端差,是加压器蒸汽压力下的饱和温度与出口给水温度之差。疏水端差又称下端差,是离开加热器汽侧的疏水温度与进入水侧的给水温度之差。

  图1  卧式表面式给水加热器结构实物

  合理的给水端差的设置,能够有效提高热交换效率,是成本控制及盈利能力的重要组成部分。在实际运行中,给水端差增大的原因有:加热器的抽汽压力和抽汽量不稳定;加热器受热面结垢使传热恶化,增大了传热管内外温差;加热器内积聚了空气,不凝结的空气附在传热管表面形成空气层,妨碍了蒸汽的凝结放热,增大了传热热阻;凝结水或给水的部分或不经过加热器,而是从加热器旁路通过;凝结水位过高,淹没了一部分传热管,使传热面积减少。而给水端差过小,纵然可以提高热交换效率,但加热器长期处于过热状态,会大缩短使用寿命。由此可见,在日常操作中,维持合理的加热器凝结水位高度,从而找到热交换效率和设备寿命之间的平衡点,成为热工控制的首要任务。

  加热器中液位测量的发展历程

  给水加热器中存在高温、高压及大量蒸汽,恶劣条件使之成为测量的难点。给水加热器的水位检测历经了几个发展阶段,从初的磁翻板液位计、浮筒液位计、直到今天比较常用的差压变送器和导波雷达液位计。

  磁翻板液位计又称就地水位计,是为传统的一种水位测量方式,至今仍然是加热器的标准配置。磁翻板液位计利用浮力原理,根据加热器的设计温度、压力及水的密度,制造出满足工况条件的浮子。浮子装在和加热器相连的筒体中,筒体中的水位和加热器中的水位等高,而筒体内浮子漂浮在水面上,即代表水位的高度。浮子内的永磁铁通过磁耦合作用引起筒体外的小磁板翻转,通过小磁板两面颜的不同,来就地读取加热器中的水位高度。磁翻板液位计是一种稳定的测量技术,但它存在两大缺陷。一是测量精度不高。因为加热器中的温度和压力的变化,凝结水的密度也发生变化,根据阿基米德浮力定律f浮=ρgV,当凝结水密度变化时,浮子浸没在水中的体积也发生变化,因此浮子淹没高度的变化会影响到测量精度。二是就地水位计在初的时候没有远传信号。

  浮筒液位计是上世纪80年代至本世纪初常用的加热器水位测量方式。因为浮筒液位计集成有信号转换器,所以能够提供远传信号。但是浮筒液位计也是基于浮力的原理,因此同样面临着测量精度差的问题。此外,浮筒液位计多数采用扭力管式测量原理,表头笨重且需要周期性的标定,给使用和维护带来了诸多不便。

  图2  导波雷达液位计工作原理

  随着差压变送器技术的发展和产品性价比的提升,差压变送器配合平衡容器成为本世纪以来较为常用的加热器水位测量方式。但无论是采用双室平衡容器,还是采用单室平衡容器,对于测点位置的选取和安装都有较高的要求。因为,低加汽测可能工作在负压工况下,所以测量值波动大,影响到生产人员的正确操。此外,差压变送器的测量原理是:ΔP=ρgh,为达到地测量,需要对密度、温度及压力进行补偿。

  导波雷达液位计采用的是时域反射原理(TDR原理,Time Domain Reflectometry)。导波雷达的工作原理,是由表头高频脉冲发生器产生电磁脉冲波信号,该信号沿着导波杆(探杆)向下传送,当遇到比此前传导介质(如空气或蒸汽)介电常数大的液体表面时产生反射信号,用超高速计时电路测量出脉冲波信号从发射到接收的传导时间。传导时间与电磁脉冲波速度乘积的一半,即代表被测介质表面到导波雷达液位计过程连接处的距离;通过给定的容器高度减去距离,计算得出液位的高度,从而达到对液位的测量。

  导波雷达液位计的测量原理及优点

  时域反射理论模型早在1939年就已建立,初用于电信业查找电缆断点。上世纪90年代中后期,部分液位计厂家致力于将TDR技术应用于工业仪表,称之为导波雷达液位计。导波雷达液位计问世后,随即成为物位测量的一大利器。导波雷达液位计的测量结果和被测介质的温度、压力、密度、粘度、电导率和介电常数无关,可以用于测量液体、浆料和固体,也可以测出物位或某些工况下的液体界面。因此,当导波雷达液位计满足设计温度、压力、量程、精度、材质及安装位置的要求时,是一种理想的物位测量仪表,几乎可以取代大多数物位计。当然,导波雷达液位计也同样面临着一些使用的限性,如其典型精度为±3mm、对温度和压力耐受的限、当介质粘度高时在探杆上形成挂料、固体介质容易磨损并拉断探杆,以及容器内的搅拌影响探杆的安装等。

  做为一种探杆和被测介质相接触的接触式物位测量仪表,导波雷达液位计的选型重点集中于探杆形式。为此,各导波雷达液位计厂家研发生产出不同的探杆形式,以满足各种工况的要求。如笔者所使用过的美国Magnetrol品牌的导波雷达液位计,就有多达22种探杆形式可供选择。

  图3  单杆探杆信号轨迹图、通州探杆信号轨迹图、同轴探杆实物图、通州探杆实物剖面图

  那么,如何选用合适的探杆形式呢?首先,需要考虑探杆对温度和压力的耐受。其次,需要考虑电磁脉冲信号在探杆上传播的轨迹。

  单式探杆(单杆、单缆)上信号轨迹呈逐步发散的状态。在信号的轨迹范围内,可能会产生干扰信号影响到液位的测量。典型的干扰信号有安装管嘴,以及容器内的焊缝、焊渣和结构件等。同轴探杆的信号则集中在同轴探杆内。同轴探杆的结构是中间有一根实心金属杆(通常直径为8mm),电磁脉冲信号在金属杆上传播;其外侧是一根金属套管(通常直径为22mm),金属套管作为金属杆的屏蔽层,起到屏蔽外部的干扰信号及集中信号的作用,以提高信号的灵敏度,便于测量介电常数较低的介质。因此,采用同轴探杆可以不用考虑安装位置及容器内结构对测量带来的影响,是理想的一种探杆形式。同轴探杆的限在于,其量程受限,通常为6m左右,以及高粘度介质所形成的“搭桥”现象。

  那么是不是说使用导波雷达液位计测量低压加热器液位,只需考虑到以上两点就了呢?实际上,还需要结合电厂低压加热器实际工况中存在大量蒸汽的特点。一是要考虑蒸汽的侵蚀作用对于探杆和表头之间密封部分的材质选择和制作工艺的考验。见图3红圆圈部分。依据笔者经验,选择应用业绩多、历经实践考验的品牌是产品的有效保障。二是需要考虑蒸汽工况下,电磁脉冲信号的传播在蒸汽中被衰减的情况。通常,导波雷达的测量原理可用以下公式来表示:

  L=D – C0.t/2

  L=液位高度

  D=容器高度

  C0=真空中的光速

  t=发射信号和反射信号的时间间隔

  在蒸气工况中,实际的液位以 L真来表示,实际的信号传播速度用C真来表示;仪表测量出的液位以L测来表示,那么:

  L真=D – C真.t/2

  L测=D – C0.t/2

  因为C真L测。依据导波雷达液位测量值来控制凝结水的高度,所造成的实际影响是凝结水位过高,致使低压加热器内部分传热管被淹没在凝结水下,热交换效率下降,给水端差增大。

  图4  7×S蒸汽探杆结构剖面图

  通过实际的观察数据和相关的文献资料信息,在低压加热器的工况条件下,C真和C0之间的差异在2%~5%之间。因为C真受到蒸汽温度、压力的影响而不断变化,所以仅从改变仪表系数的方面来进行C真的修正,还是不能很好满足对测量准确度的要求。

  对于C真进行实时的补偿,是导波雷达在蒸汽工况下能完成准确测量的先决条件。笔者所使用的Mangetrol导波雷达液位计采用了专利的蒸汽探杆,用于实时的C真补偿,其补偿的工作原理如下:

  在蒸气探杆中,距离表头下方125mm处安装有一个蒸汽目标(Steam Target),表头每秒会发送一个询问信号,该询问信号到蒸汽目标后被发射回表头的时间t问询被测量。此时,电磁脉冲信号在当前工况下的速度C真可以用以下公式准确计算出来:

  C真=d/t问询,其中,d=125mm

  获得C真后,导波雷达将以此值来进行真实液位值的计算,从而达到实时补偿的目的。

  小结

  综上所述,Magnetrol专利的蒸汽探杆,集成了同轴式、良好的蒸汽隔密封及实时蒸汽补偿的优势。同时,Magnetrol致力于同轴探杆的大规模推广,具有同轴探杆生产的规模优势,给电力行业用户带来了高性价比的产品。此外,Magnetrol专利的AURORA系列液位计,将磁翻板和导波雷达液位计集成为一体,提供了重要应用场合的现场和远传测量,减少了过程接口数量,避免了潜在泄露点,提高了使用维护的便利性。

  导波雷达液位计在检测液位时采用的是时域反射(TDR)原理,信号的传输介质是同轴电缆和导波杆,可以认为导波雷达液位计进行液位检测是基于传输线的特性的。以下简要介绍 TDR 的原理。

  同轴电缆和导波杆是比较常用的信号传输线,我们可以把它等效为理想的双导线传输线,由相同的很多小的部分组成,每个小的部分又由很多的电阻 R、电容C、电感 L 和电导 G 等元件一起组成,并且同轴电缆和同轴导波杆的特性阻抗在每处都是一样的。

  同轴电缆等效传输线原理图如图 2-1 所示。

  图 2-1 同轴电缆等效传输线原理图

  由上图知道,如果同轴电缆与其他介质相接触,由于介电常数(这里用rε 来表示)是不同的,会使相接触部分的等效阻抗发生一定变化。当同轴电缆的某一端发射出脉冲信号时,脉冲信号会沿电缆进行传输。如果传输中没有与其他介质的接触时,那么对应的负载阻抗和电缆的特征阻抗相等,那么脉冲会被吸收因此没有回波信号产生;如果发生与其他介质的接触时,那么对应的负载阻抗就会发生变化,使之和特征阻抗不相等,就会产生回波信号。

  这里定义一个反射系数为 ρ ,它是反射信号与发射信号的幅度的比值,我们用它来用来表示负载阻抗和特性阻抗的关系。

  其中:tZ 表示任意一点的阻抗,cZ 表示特性阻抗。因此,在各种情况时阻抗和反射系数的不同如下所示:1.当同轴电缆传输正常时,那么t cZ =Z

  , ρ =0 ,发射脉冲会被吸收,没有回其中:tZ 表示任意一点的阻抗,cZ 表示特性阻抗。因此,在各种情况时阻抗和反射系数的不同如下所示:

  1.当同轴电缆传输正常时,那么t cZ =Z , ρ =0 ,发射脉冲会被吸收,没有回

  图 2-2 断路回波信号示意图

  3.当同轴电缆传输短路(即为与其他介质接触时)时,那么tZ =0 , ρ = −1,同样产生全反射,但是短路回波信号和发射信号具有相反的性,短路回波示意图如图 2-3 所示。

  图 2-3 短路回波信号示意图

  当脉冲信号在导波杆上传输时,如果碰上其他介质就会使该点的阻抗变化,从而反射系数也会发生变化,会产生回波信号。我们可以进一步计算发射脉冲和回波脉冲的时间差就能计算出发射电路到该介质接触点的距离。

  导波雷达测量系统原理:

  导波雷达液位计就是时域反射原理来进行测量的,测量过程我们分为信号传播和整个测量系统来作介绍。

  导波雷达信号传播示意图如图2-4所示。

  在机械机构上,仪表的表头内部的收发电路会通过同轴射频接插件和同轴电缆相连。同轴电缆的另一端将会在法兰的位置与同轴导波杆连接。导波杆则是直接插入到罐体的介质内,导波杆的末端与罐底底部则是有一段距离的。

  根据左图可以看到,电路板输出的脉冲信号会通过同轴电缆,再在同轴导波杆上进行传播。由2.1节的介绍,在同轴电缆和导波杆的连接处会首先发生断路,进而一部分信号会产生一个顶部回波信号,但是仍有一部分信号还会继续沿导波杆传播。当信号与被测液体表面接触时,其阻抗特性会发生变化,其一部分也会被反射,会再产生一个真正的液位回波信号。也会有另外一部分信号仍然会继续向下传播,终会损耗在不断发射中。液位计可以判断出液位回波和顶部回波之间的时间差,根据这个时间差,我们用单片机进行计算就可以得到液位的高度。

  根据右图所示,在罐体为空的时候,没有液位就不会发生液位回波信号,但是仍然会有顶部回波信号,而且在导波杆的底部会断路而产生一个的底部回波信号‘。

  假如罐体内有两种不同的介质,由于密度不同这两种介质会分别存在于液体的上部和下部。如果这两种介质的介电常数大不相同,那么就可以通过回波的不同来判断两种介质的分界面,进而也可以得出这两种介质的不同高度。由于脉冲信号是通过导波杆传播,导波杆上的空气、气态的凝结不会影响性能,因此可以长时间测量低介电常数的产品。一般情况下被测液体的介电常数越大回波信号也就越强,也就更容易检测出液位,比如水比丁烷更容易测量。

  假设电磁信号在介质中传输无损耗,则信号在其中的传播速度可以表示为:

  其中:c为电磁波在真空中的传播速度(3x10八立方米m/s)。

  Y为介质的相对介电常数,

  从为同轴电缆的相对磁导率(大多数液体其近似等于l}o

  我们可以得到:

  若电磁波在同轴导波杆上的传播距离为L,那么回波信号的传播时间为:根据这个实际传播速度结合时间就可以计算出液位[[19]。因此,的深度:

  L可以表示为液位因罐体高度为H,后得到的液位高度为:

  h=H一L导波雷达测量系统示意图如图2-5所示。

  图中为整个导波雷达测量系统,导波雷达液位计发送的是窄脉冲信号,对刚性杆大测量范围为6.1 m,柔性杆为大范围则为30m。在实际测量中,在量程的上部和下部都会存在一段死区,分别为上部死区和下部死区,其长度分别为Lz和L,,这两个死区的特性是非线性的,所以造成测量误差会偏大。我们把上部死区的低点定义为上参考点,用它来代表液位的满点(高可测点)和20mA输出电流。下部死区的高点则定义为下参考点,用它来代表液位的零点(低可测。

  点)和4mA输出电流。在导波杆末端到罐底的距离为L。

  由此,在实际应用时,液位的计算需要考虑到上部死区和下部死区的因素。在液位显示时需要加上杆末端距离罐底的距离L。和下部死区的高度L1 [21] o

  一般液位测量时只需要测量一定范围内的高度,即有效量程为两个死区之间的高度,也叫线性区。

  在罐体内实际显示的液位高度(即以下参考点作为零点)为:

  hD = h一L。一L, 这里L+L、是液位的整体迁移量。

  本章主要是对导波雷达液位计进行了理论分析,首先介绍了导波雷达液位计测量所需要的时域反射原理,接着详细讲述了导波雷达测量系统的原理,后则概括了本课题所设计的导波雷达液位计所要实现的功能和特点。

  Magnetrol麦格纳邱液位设备  700系列高性能导波雷达液位计 704、705、706

  常用型号:

  705-510a-110/7mr-a110-120 :

  705-510A-110/7MA-A110-181:

  705-51AA-110/7MS-A578-120 :

  705-510A-110/7MS-A578-120:

  705-510A-110/7MA-A110-110

  正常货期:货期 8-10周,急需货期现货可以联系店主安排调货

  Eclipse增强型705是采用具有性的导波雷达(GWR)技术,两线制, 24VDC回路供电的液位变送器。这个单一的变送器可以用于类型的探杆,并提供更强的性,正如SFF=91%的失效系数所表现的,允许它在SIL 3回路中使用。

  Eclipse 705系列高性能导波雷达液位计

  ECLIPSE导波雷达液位计的设计提供了远远超过许多传统技术的测量性能。该产品在工业上首次采用了的***外壳设计,它是把接线室和电子线路室分别安装在同一个平面上,***优化的倾斜角度更方便接线、组态和观察显示。

  ECLIPSE 705变送器支持FDT/DTM标准与PACTware?PC端软件可以允许额外的配置和灵活的故障排除。

  技术

  导波雷达

  Eclipse 705系列高性能导波雷达液位计

  低功耗脉冲雷达 结合了时域反射原理 、等效采样(ETS)与现代化低功率电路等技术。这些原理与科技的集成创造了高速导波雷达 液位计。电磁脉冲通过导波管传播,它聚焦于能量,并产生比非接触式雷达更有效的系统。

  可测量低介电常数介质(εr ≥ 1.4)

  容积输出

  连接/拆卸探杆轴套

  可在蒸汽工况中使用及忽视泡沫

  IS, XP与非易燃认

  忽视挂料

  原理

  ECLIPSE导波雷达变送器是基于TDR技术。(时域反射原理)TDR利用导波(探杆)传播电磁脉冲信号。当脉冲到达介电常数高于其行进的空气(εr= 1)的液体表面时,一部分脉冲被反射。通过超高速计时电路来***测量信号传输的时间,从而实现对液位(固体料位)的***测量 更多导波雷达产品

  Magnetrol主要产品:

  1、MAGNETROL液位计

  2、MAGNETROL变送器

  3、MAGNETROL液位开关

  4、MAGNETROL浮筒液位变送器

  5、MAGNETROL磁浮子液位计

  6、MAGNETROL热式气体质量流量计

  7、MAGNETROL浮球液位开关

  8、MAGNETROL超声波液位计

  9、MAGNETROL液位变送器

  Magnetrol型号产品名称型号

  MAGNETROL(MAGNETROL)磁致伸缩位移传感器MG8100-1C7P1D5MDXNF91 G1/1000 H4050 磁致伸缩位移传感器MG8100-1C7P1D5MDXNF91 G1/1000 H4050

  MAGNETROL(MAGNETROL)磁致伸缩位移传感器MG8100-1C7E1B5MDXNF91 E1/800 H1800 磁致伸缩位移传感器MG8100-1C7E1B5MDXNF91 E1/800 H1800

  09-5129-001 | Magnetrol Sensor Amp Bd 传感器09-5129-001

  09-5129/09-5126 | Magnetrol 2-bd Assembly09-5129/09-5126

  Magnetrol XC35-1S40-CDHXC35-1S40-CDH

  Magnetrol F10-1D22HM7F10-1D22HM7

  Magnetrol F-XB73-4S30-BDQF-XB73-4S30-BDQ

  Magnetrol F-C35-PS40-CDAF-C35-PS40-CDA

  Magnetrol B35-PB30-FNAB35-PB30-FNA

  870-102-00 | Magnetrol Pcb870-102-00

  09-5131-001 | Magnetrol Pcb09-5131-001

  810-0205-D01 | Magnetrol Level Switch Probe810-0205-D01

  09-5125-001 | Magnetrol Control Board09-5125-001

  345-3442-100 | Magnetrol Ultrasonic Xmotor345-3442-100

  030-2409/2407 | Magnetrol 2-bd Assembly030-2409/2407

  Magnetrol XF10-AD24-BDBXF10-AD24-BDB

  Magnetrol XF10-AD24-BDBXF10-AD24-BDB

  Magnetrol XF10-AD24-BDBXF10-AD24-BDB

  Magnetrol XF10-AD24-BDBXF10-AD24-BDB

  Magnetrol XF10-AD24-BDBXF10-AD24-BDB

  Magnetrol XF10-AD24-BDBXF10-AD24-BDB

  Magnetrol XF10-AD24-BDBXF10-AD24-BDB

  Magnetrol XF10-AD24-BDBXF10-AD24-BDB

  Magnetrol XF10-AD24-BDBXF10-AD24-BDB

  Magnetrol XF10-AD24-BDBXF10-AD24-BDB

  MAGNETROL ALL 磁致伸缩位移传感器MAGNETROL ALLMG8100-1C7P1D5MDXNF91 G1/1000 H4050

  2MAGNETROL ALL 磁致伸缩位移传感器MAGNETROL ALLMG8100-1C7E1B5MDXNF91 E1/800 H1800

  Magnetrol浮子X4M1-AD1A-REAA-1111FY1212B080

  Orion lnstuments浮球开关F9K-2400-070

  Magnetrol浮球开关910-WMH2-010

  Magnetrol液位计705-510A-110

  Magnetrol传感器705-510A-100-WH

  Magnetrol浮球式位面开MODEL:910-WMH2-010 SERIAL:43040-O1

  Magnetrol液位开关B75-1B20-FAD

  Magnetrol导波雷达液位计7MS-A118-125-WH

  Magnetrol导波雷达液位计7MR-A110-116/704-511A-1400-1M

  Magnetrol导波雷达液位计传感器705-510A-110-WH

  Magnetrol导波雷达液位计7MS-A118-1260-1M/705-510A-210

  Magnetrol液位计705-510A-110/7MS-A118-350TK

  Magnetrol导波雷达变送器705-510A-A10/7MD-A11N-130

  Magnetrol开关组件089-7401-110

  Magnetrol流量变送器TA2-A1BO-131

  Magnetrol流量变送器TMR-A23A-018

  Magnetrol流量变送器TA2-A1BO-131/TMR-A23A-018

  Magnetrol流量变送器TA2-01B1-130

  Magnetrol液位变送器E3B-KG3A-H1C

  Magnetrol液位变送器E3A-PG3C-H11

  Magnetrol液位变送器E3F-KQ4C-H1F

  Magnetrol液位变送器705-510A-110

  Magnetrol液位装置089-8301-002

  Magnetrol雷达液位计R82-510A-011

  Magnetrol雷达液位计RAA-A440-100

  Magnetrol磁翻板液位计2M1-AC1A-ACAA-1111-1N1BA2B-320

  Magnetrol液位开关T31-002N-BOB

  MAGNETROL水流开关F50-1A2C-CKP

  Magnetrol液位开关T35-O02N-BOB

  Magnetrol液位开关962-50AO-010

  Magnetrol液位开关B4O-5C20-FAM

  Magnetrol液位开关B40-5C20-R1M

  Magnetrol液位开关B40-1B6O-R1M

  Magnetrol液位开关335-AA1A-G5P

  Magnetrol液位开关 355-510A-10B

  Magnetrol液位开关C29-1B20-CLA

  Magnetrol液位开关T20-1B2A-BKP

  Magnetrol液位开关T31-002N-BOB

  Magnetrol液位开关T31-004A-A4P

  Magnetrol液位开关T35-002N-B01

  Magnetrol液位开关TD2-8D00-0G1

  美国MAGNETRO变送器706

  美国MAGNETROL开关

  美国MAGNETROL开关A10系列

  美国MAGNETROL流量计

  美国MAGNETROL流量开关F10

  美国MAGNETROL指示器

  Magnetrol流量开关TD2-8D01-OCO/TMC-A240-015

  Magnetrol雷达液位计705-510A-110/7MA-A11

  0-180

  Magnetrol开关组件CDD(89-7401-124)Magnetrol,585593-03-001

  Magnetrol液位计XT35-O02N BOB #1

  Magnetrol浮球液位开关B73-1B30-BAR SN:596842-06-001

  Magnetrol液位开关961-50AO-010/9A1-A11A-008

  Magnetrol电路板Z31-2844-001

  Magnetrol液位开关B73-2B30 585847-02-002

  Magnetrol水洗流量开关XTD1-2D0O-OCO/TMD-A110-008 sn.6190

  Magnetrol.C29-1N40-BCC NO608867-01-001

  Magnetrol液位开关089-7401-200/DPDT

  Magnetrol开关组件FDD(89-7401-097)Magnetrol,585593-02-005

  Magnetrol开关组件BDR(89-7401-097)Magnetrol,585593-08-008

  Magnetrol开关组件FDM(89-7401-098)Magnetrol,585593-06-001

  Magnetrol液位开关B72-1B2O-FAR NO:588897-16-001

  Magnetrol液位计705-510A-110/7MA-A110-080

  Magnetrol雷达液位计704-511A-140/7MR-A118-116

  Magnetrol导波雷达液位变送器704-511A-140/7MR-A118-106

  Magnetrol水位变送器NO.705-510-110

  Magnetrol导波雷达液位计(含不锈钢测量筒)705-510A-110&7MF

  Magnetrol.K35-2B30-BNB NO 598354-01-002

  Magnetrol流量开关F50-1B2F-FNT

  Magnetrol液位开关NO B40-5C20-R1M 2085PSI SN.618908-14-O(

  Magnetrol雷达液位计705-510A-110 7MS-A118-125 XS31-4C2B-(

  MAGNETROL液位开关

  MAGNETROL开关TD2-8DOO-OG2/TMC-A110-005