GDGW53-IAYPBBAMA雷达液位计供应商
防爆安全认证与防护等级
化工领域需满足ATEX/IECEx防爆认证,隔爆型(Ex d)外壳可承受内部1.5MPa爆炸压力。本安型(Ex ia)设计将回路能量限制在1.2W以下,适用于Zone 0区。传感器整体防护等级达IP68,可短时浸入10米水深。某海上平台应用案例显示,通过SIL3认证的冗余传感器系统,平均无故障时间(MTBF)超过15年。最新光纤传感技术彻底消除电火花风险,已应用于氢气储罐监测。
在化工、油气、食品等行业中,经常需要测量不同液体之间的分界面的高度,从而控制反应过程、原料储量等。
MTS传感器部门生产的Level Plus系列液位计采用MTS的Temposonics®磁致伸缩传感技术,配合特定密度的磁性浮子,可对不同液体的分界面高度进行测量。
市场上测量液体分界面高度的产品群雄逐,招式各有千秋,小编将一一细数,看看哪种测量原理能拔得头筹!
一、射频导纳液位计(电容液位计)
射频导纳液位计的传感器是一根带特氟龙涂层的金属杆或者柔性金属缆,需要插入被测液体内。这样金属杆(缆)和容纳被测液体的金属罐壁之间就会产生电容,这个电容在射频电路(频率达到300Ghz)下被放大到测量的电导纳值。如果被测液体分层后形成上层油下称水的分层,那么会形成C1、C2和C3三个电容值。因为水的导电性能使C3的值大,则射频导纳液位计测量得到的电容值主要取决于C3的值。因此水位的高度就和C3的值几乎成正比例关系。
根据以上测量原理,射频导纳测量分界面的必要条件和限性:
1、 上层液体不能导电,如苯、碳氢化合物等;下层被测液体是导电液体,如普通水或者水溶液。
2、 对分界面测量精度要求不高。因为上层油的高度和被测罐体的形状等都会被测精度影响。
二、导波雷达液位计
导波雷达液位计的传感器也是金属杆或者金属缆插入被测液体内。液位计的电子头发射雷达波脉冲。雷达波脉冲会沿着金属杆或者金属缆朝向被测液体传播,当到达介电常数发生变化位置时会产生反射。液位计电子头计算发射雷达波脉冲和接受雷达波脉冲的时间差来确定被测液位的高度。如下图,如果被测液体上层油下称水,则雷达波分别在从空气进入油的时候、以及从油进入水的时候分别发生反射。
从导波雷达的测量原理可知其测量分界面的必要条件:
1、 雷达波发生反射的必要条件是介电常数发生变化。如果介电常数的变化很小的话,雷达波的反射信号也很小以至于无法测量。因此导波雷达测量分界面要求下层液体的介电常数比上层液体的要大得多。而介电常数的大小一般无法通过常规手段测量,而且介电常数大小很容易受到环境温度、电磁频率、罐内的化学反应等影响。这就决定了无法轻易判断导波雷达能否和应用环境相适应。
2、 为了保持雷达波穿过上层液体后还有的能量在分界面上还能产生反射,一般要求传感器是一个同轴结构。上图是导波雷达测量分界面的安装要求,左边是导波雷达的测量杆和测量筒是一个同轴结构,右图中导波雷达的测量杆安装在一个布满倒液孔的测量管内。同轴结构内外的分界面变化有时无法真正同步会导致测量误差。而且粘性较大的液体会粘连在同轴结构内干扰测量。
3、 如果要测量被测液体分界面知道上层液体的具体介电常数。因为雷达波穿过空气的速度是光速,而穿过上层液体的速度小于光速且和其介电常数成反比。因为介电常数不容易测量且善变,因此导波雷达很难测量分界面高度。
三、浮筒液位计
浮筒液位计测量分界面一般安装在罐体的侧面,把被测液体通过两个法兰口从被测罐引入测量筒内,同时测量通内还有一个浮子通过一些机械结构和电子头相连。通过测量浮子受到浮力的变化来感应测量筒内液体的平均密度,从而评估出被测分界面的高度(假定测量筒内只有两种液体)。浮筒液位计不要求被测液体的导电性和介电常数。
根据浮筒液位计的原理和内部结构,其测量分界面的必要条件和限:
1、 只能安装在被测罐体侧面,且测量筒内没有空气。
2、 为了测量的精度定期进行校准,因为浮子到电子头之间的力传输结构会随着时间而偏移设定。
3、 因为测量筒的狭小结构,被测液体中的固体或者粘性物质会使浮子卡在测量筒内,无法真正反映分界面高度。
四、双法兰液位计
双法兰液位计通过测量两个固定位置的压力差来反映两个位置之间的液体的平均密度从而间接测量分界面高度。双法兰液位计也是安装在罐体的侧面,但是不需要测量筒,因此解决了上面浮筒液位计内浮子容易卡死的问题。
双法兰液位计通过充油的毛细管把罐内的两个压力值传输到电子头部分。因此双法兰液位计的界面测量受到以下因素的影响:
1、 环境温度变化对毛细管内油压有明显影响,因此长的测量范围要长的毛细管,从而导致温度变化对测量精度也影响很大。
2、 两个法兰之间充满液体。
3、 毛细管充油需要的生产技术,因此测量范围对仪表价格影响很大。
4、 安装过程要毛细管不要受到外部机械冲击,毛细管受损或者油路堵塞。
五、终篇 - 磁致伸缩液位计
磁致伸缩液位计通过测量浮在分界面上的磁性浮子的位置来测量分界面的高度。MTS生产的Level Plus系列液位计可以实现测量误差控制在1毫米以内,大的测量范围可以达到22米。磁致伸缩液位计的测量不依赖于液体的导电性、介电常数等物理参数,只是基于不同液体的密度差。密度差和相互不溶解是形成分界面的必要条件。
Level Plus系列
磁致伸缩液位计只要选择好特定浮子的密度,安装后不需要定期的维护和标定就能液位计的长期性和性。
磁致伸缩液位计的应用限性在于不能用于操作粘度很高的液体(建议粘度小于400厘泊)。高粘度液体容易把浮子粘在一个位置不变,导致磁致伸缩液位计测量到的浮子位置不能准确反映分界面高度。
Level Plus磁致伸缩液位计应用实例
1、 二硝基甲苯(DNT)和水的分界面
因为二硝基甲苯(DNT)相对于水的比重是1.52,因此在罐内是下层液体,因此无法使用射频导纳、导波雷达。而且因为现场的测量范围超过4米,因此无法使用浮筒液位计和双法兰液位计。通过使用Level Plus系列磁致伸缩液位计可以同时测量反应罐内的液位和分界面高度,从而对化学反应过程控制。
2、 液体白磷和水的分界面
白磷是生产磷酸类物质的基本原料。但是因为白磷在空气容易自然,而且有毒,因此一般都储存在具有水封的储存槽内。Level Plus液位计可以对水封下的白磷存量进行实时监控,同时水封的厚度白磷和空气接触。
3、 大型成品油罐
炼化工厂、燃料输送系统等都有一些成品油储罐、转运罐等,这些罐子高度都有15~20米高。因为有些成品燃油会吸收空气中的水分,导致很多罐底都有积水。MTS传感器生产的Level Plus液位计可以同时测量罐内成品油液位和油水分界面的高度,同时还可以根据液位计内部的罐容表来计算罐内容量,并且输出罐内的成品油温度。Level Plus液位计只通过罐上的一个测量孔,就可以同时输出液位、分界面高度、罐内容量和温度的测量结果,满足石油组织对成品燃油的交接计量要求。
昌晖仪表介绍一种由双法兰液位变送器和导波雷达液位计组成的真空制盐蒸发罐液位测量技术方案,本方案大程度克服生产中强腐蚀、结晶堵塞、真空、高温、泡沫等因素对仪表的影响,经制糖、海绵钛和制盐的真空蒸发室液位测量应用,明此真空蒸发室液位测量系统可长期、稳定和地运行。
真空制盐是当今世界普遍采用的现代化制盐方法,指卤水在不同真空压力状态下的蒸发罐中进行蒸发,逐级浓缩、结晶制盐的过程。制盐过程中核心工序是蒸发,生产中通过蒸发罐中液位变化计算水分蒸发量,并达到控制溶液浓度的目的。生产中,强腐蚀、结晶堵塞、真空、高温同时存在,导致制盐蒸发罐液位测量仪表损坏率高,生产自动化控制系统无法正常运行。论文将重点阐述真空制盐蒸发罐液位测量方法。
真空制盐蒸发工艺
真空蒸发技术起源于1812年英国糖厂的单效真空蒸发,1887年美国将此技术用于制盐,1940年开始应用于中国制盐行业。
图1 真空制盐流程图
蒸发是液体表面发生汽化或溶液部分汽化的现象,蒸发时液体不断吸收热量,温度越高蒸发越快,溶液沸腾时蒸发速度快。根据蒸发罐内压力,蒸发分为加压蒸发、常压蒸发或负压蒸发,在负压下的蒸发,我们称为真空蒸发。应用广的是采用强制循环真空蒸发器,如图2。
图2 强制循环真空蒸发器
制盐企业为提高竞争力,不断降低成本、提高产品质量,同时满足减排,就对蒸发工艺进行改进,提高自动化控制水平,使蒸发效率达到佳状态。
实行多效蒸发生产目的是为了多次重复利用二次蒸汽,以降低单位产品的能耗,有效节约能源。蒸汽利用的次数就是效数。蒸发效数越多,蒸汽用量越少,能耗越低,但效数增多,会增加设备成本。
真空制盐主要过程为蒸汽加热一效卤水,排出的二次蒸汽逐效加热下一效卤水。通过逐效蒸发,使盐浆增稠,稠料液去离心机脱水,即为盐。每一效蒸发的关键是控制盐浆的浓度,而盐浆有较强腐蚀性、容易结垢、粘结,浓度直接测量,通常是通过在封闭蒸发室中蒸发前后的液位比来间接控制盐浆浓度。所以制盐蒸发罐液位测量是真空制盐重要的参数。
真空制盐蒸发罐液位测量技术方案
1、原用方案分析
用人工监测液位的方式,提高产品质量和生产效率,人们逐渐用“摄像视频+雷达液位计”,实现自动化实时控制,如图3,应用脉冲雷达液位计连续测量旁通管中的液位。
图3 雷达液位计+窥镜液位测量法
此方案在实际应用中,因盐浆结垢,水平连通管、旁通管经常发生堵塞问题,造成旁通管内液位假象,需频繁停车,拆装法兰并清洗管道。蒸发中,盐浆在蒸发室内因搅拌产生大量的泡沫,使脉冲雷达液位计测量液位假象。人工清洗工作量大,生产成本高,液位测量不准,自动控制连续运行。
2、可长期运行的真空制盐蒸发罐液位测量技术方案
随着仪器仪表技术的发展,市场上已出现真空的液位变送器以及管道清洗技术,为真空制盐蒸发液位监测提供了新思路。在设计、应用中,建议液位监测采用“法兰差压变送器+导波雷达液位计+窥镜”三重组合冗余方案,确保测量的准确性、性、性。设计与安装方案,如图4。
图4 真空制盐蒸发罐液位测量双法兰液位变送器+导波雷达液位计+窥镜液位监测方案
①方案设计说明
a、蒸发室与旁通管间的连接管,从水平改为斜角,角度控制在20°左右,延长结垢清洗周期;
b、在连通管上安装冲洗环和截止阀,可定期自动清洗;
c、在旁通管面部安装雷达液位计;
d、在旁通管另一侧安装20°斜角的法兰短管,再安装双法兰液位变送器,用于液位直接测量。同时在法兰之间加装冲洗环(结构如图5),冲洗环上配置冲洗用截止阀,可定期清洗;
图5 清洗环结构示意图
e、在旁通管底部可加装一个清洗阀门,大修时可以使用;
f、在蒸发室面部,仍安装采光窗和视频摄像窗;
g、旁通管内径建议在300mm以上,由于蒸发液位较高,毛细管较长,建议采用DN80法兰。
②方案优势
a、双法兰液位变送器可直接测量液位,消除蒸发过程中搅拌产生的泡沫对雷达测量产生的误差,提高测量精度和产品质量;
b、能连续准确测量液位,为生产过程实现自动化控制提供依据;
c、雷达液位计与双法兰液位变送器组合,实现冗余监控,提高自动化控制系统性;
d、倾斜的连接管、法兰短管,可以减少沉淀结垢物的堆积,也便于冲洗;
e、配置冲洗环与截止阀相连,好是电动截止阀,用程序控制,定期对连接管、法兰、旁通管进行清洗,减少管道结垢堵塞的问题,提高设备维护效率, 降低维护成本;
f、保留窥镜,配置视频窗口,以便观察、巡视。
真空制盐蒸发罐液位测量仪表选择与配置
根据上述设计方案,还需配置合适的仪表,才能确保装置正常运行。
1、雷达液位计的选择
在制盐真空蒸发中,卤水因搅拌产生的较厚泡沫,会对脉冲雷达液位计造成干扰,应选用缆式导波雷达液位计,以此测量的性和测量精度。
2、双法兰液位变送器的选择
真空制盐蒸发工段,介质具有腐蚀性、易结晶沉淀,而且环境存在腐蚀性气体,选择双法兰液位变送器时,考虑以下因素:
①双法兰液位变送器的法兰膜片材质建议选择钽材。
②双法兰液位变送器壳体材质可选择316不锈钢。
③冲洗环可选择316L。为结晶颗粒较大,不易排出,建议冲洗孔选择1/2NPT。
④变送器类型选择:真空制盐蒸发器的高度通常在6m以上,属于密封容器,根据方案应选择通径DN80以上的带测量筒的双法液位兰变送器。常见多效真空蒸发,在Ⅰ效、Ⅱ效工作为正压,Ⅲ效、Ⅳ效、Ⅴ效为负压。根据操作压力,Ⅰ效、Ⅱ效可选择标准的双法兰液位变送器,而Ⅲ效、Ⅳ效、Ⅴ效蒸发器,需选择专门为真空环境定制生产的双法兰液位变送器。
根据上述条件,各效蒸发罐液位测量所用双法兰液位变送器选型基本要求可参考表1。
表1 各效蒸发器液位测量所用双法兰液位变送器设计选型基本要求
以上设计安装方案,已在制盐、制糖、海绵钛产业中得到成功试用,充分明此方案可有效解决真空蒸发中因泡沫、结晶、真空、强腐蚀产生的液位测量难题。
其他建议
真空制盐,一般采用差压变送器配合孔板节流装置测量蒸汽、卤水和盐液流量。近年来,许多厂家应用电磁流量计测量盐液流量。但环境对碳钢法兰造成了严重的腐蚀,导致内衬PTFE发生变形损坏。因此,昌晖仪表建议选择的电磁流量计内衬PTFE材质,并要求法兰为316L材质。
GDGW53-IAYPBBAMA雷达液位计供应商
本文旨在通过实践来探讨电厂低压给水加热器上液位的测量,并解析了加热器结构及其采用各种不同液位测量仪表的历程和工况特点,论述了导波雷达液位计在低压给水加热器上的使用优势,藉此给电力行业热工人士提供一些有价值的参考。
给水加热器的结构与功能
给水加热器是一种利用汽轮机抽汽加热给水,以提高热效率的加热设备,是电厂回热系统的重要辅机之一。加热器的工作原理是利用汽轮机做过功的乏汽加热凝结水和给水,而不是直接将乏汽排入凝汽器,以充分利用乏汽的焓,降低冷源损失,同时减弱锅炉受热面的热应力。
加热器按汽水传热方式的不同,可分为表面式和混合式。目前,在火力发电厂中除了除氧器采用混合式加热外,其余高低压加热器均采用表面式加热。按照水侧的布置方式和流动方向的不同,表面式加热器又分为立式和卧式。
表面式给水加热器的特点,是加热工质(汽轮机的抽汽)与被加热工质(锅炉给水)相互不混合,通过管壁来传递热量。传热管内是给水,传热管外是蒸汽。蒸汽在加热器里放出热量并凝结成疏水,由疏水口排出。由于加热蒸汽通常都具有一定的过热度,为使给水温度达到所期望的值,同时加热面积尽可能的少,可设置一个过热蒸汽冷却段,以充分利用抽汽的过热度。蒸汽由汽相变为饱和水,同时放出汽化潜热的过程是在凝结段里完成的。凝结段是给水加热器的主要换热区段,管内给水大部分的焓升是由这一区段提供的。因此,具有凝结段的加热器是电厂用给水加热器的基本型式。
加热器中液位测量的重要性
加热蒸汽和被加热的水之间是通过金属表面来传递热量的。由于传热热阻的存在,给水不可能被加热到蒸汽压力下的饱和温度,不可避免地存在着一个端差。因此,给水端差(TTD = Terminal Temperature Difference)和疏水端差(DCA = Drain Cooler Approach temperature difference)是加热器的两个主要。给水端差和疏水端差的设置,直接影响到机组的率和运行的性。给水端差又称为上端差,是加压器蒸汽压力下的饱和温度与出口给水温度之差。疏水端差又称下端差,是离开加热器汽侧的疏水温度与进入水侧的给水温度之差。
图1 卧式表面式给水加热器结构实物
合理的给水端差的设置,能够有效提高热交换效率,是成本控制及盈利能力的重要组成部分。在实际运行中,给水端差增大的原因有:加热器的抽汽压力和抽汽量不稳定;加热器受热面结垢使传热恶化,增大了传热管内外温差;加热器内积聚了空气,不凝结的空气附在传热管表面形成空气层,妨碍了蒸汽的凝结放热,增大了传热热阻;凝结水或给水的部分或不经过加热器,而是从加热器旁路通过;凝结水位过高,淹没了一部分传热管,使传热面积减少。而给水端差过小,纵然可以提高热交换效率,但加热器长期处于过热状态,会大缩短使用寿命。由此可见,在日常操作中,维持合理的加热器凝结水位高度,从而找到热交换效率和设备寿命之间的平衡点,成为热工控制的首要任务。
加热器中液位测量的发展历程
给水加热器中存在高温、高压及大量蒸汽,恶劣条件使之成为测量的难点。给水加热器的水位检测历经了几个发展阶段,从初的磁翻板液位计、浮筒液位计、直到今天比较常用的差压变送器和导波雷达液位计。
磁翻板液位计又称就地水位计,是为传统的一种水位测量方式,至今仍然是加热器的标准配置。磁翻板液位计利用浮力原理,根据加热器的设计温度、压力及水的密度,制造出满足工况条件的浮子。浮子装在和加热器相连的筒体中,筒体中的水位和加热器中的水位等高,而筒体内浮子漂浮在水面上,即代表水位的高度。浮子内的永磁铁通过磁耦合作用引起筒体外的小磁板翻转,通过小磁板两面颜的不同,来就地读取加热器中的水位高度。磁翻板液位计是一种稳定的测量技术,但它存在两大缺陷。一是测量精度不高。因为加热器中的温度和压力的变化,凝结水的密度也发生变化,根据阿基米德浮力定律f浮=ρgV,当凝结水密度变化时,浮子浸没在水中的体积也发生变化,因此浮子淹没高度的变化会影响到测量精度。二是就地水位计在初的时候没有远传信号。
浮筒液位计是上世纪80年代至本世纪初常用的加热器水位测量方式。因为浮筒液位计集成有信号转换器,所以能够提供远传信号。但是浮筒液位计也是基于浮力的原理,因此同样面临着测量精度差的问题。此外,浮筒液位计多数采用扭力管式测量原理,表头笨重且需要周期性的标定,给使用和维护带来了诸多不便。
图2 导波雷达液位计工作原理
随着差压变送器技术的发展和产品性价比的提升,差压变送器配合平衡容器成为本世纪以来较为常用的加热器水位测量方式。但无论是采用双室平衡容器,还是采用单室平衡容器,对于测点位置的选取和安装都有较高的要求。因为,低加汽测可能工作在负压工况下,所以测量值波动大,影响到生产人员的正确操。此外,差压变送器的测量原理是:ΔP=ρgh,为达到地测量,需要对密度、温度及压力进行补偿。
导波雷达液位计采用的是时域反射原理(TDR原理,Time Domain Reflectometry)。导波雷达的工作原理,是由表头高频脉冲发生器产生电磁脉冲波信号,该信号沿着导波杆(探杆)向下传送,当遇到比此前传导介质(如空气或蒸汽)介电常数大的液体表面时产生反射信号,用超高速计时电路测量出脉冲波信号从发射到接收的传导时间。传导时间与电磁脉冲波速度乘积的一半,即代表被测介质表面到导波雷达液位计过程连接处的距离;通过给定的容器高度减去距离,计算得出液位的高度,从而达到对液位的测量。
导波雷达液位计的测量原理及优点
时域反射理论模型早在1939年就已建立,初用于电信业查找电缆断点。上世纪90年代中后期,部分液位计厂家致力于将TDR技术应用于工业仪表,称之为导波雷达液位计。导波雷达液位计问世后,随即成为物位测量的一大利器。导波雷达液位计的测量结果和被测介质的温度、压力、密度、粘度、电导率和介电常数无关,可以用于测量液体、浆料和固体,也可以测出物位或某些工况下的液体界面。因此,当导波雷达液位计满足设计温度、压力、量程、精度、材质及安装位置的要求时,是一种理想的物位测量仪表,几乎可以取代大多数物位计。当然,导波雷达液位计也同样面临着一些使用的限性,如其典型精度为±3mm、对温度和压力耐受的限、当介质粘度高时在探杆上形成挂料、固体介质容易磨损并拉断探杆,以及容器内的搅拌影响探杆的安装等。
做为一种探杆和被测介质相接触的接触式物位测量仪表,导波雷达液位计的选型重点集中于探杆形式。为此,各导波雷达液位计厂家研发生产出不同的探杆形式,以满足各种工况的要求。如笔者所使用过的美国Magnetrol品牌的导波雷达液位计,就有多达22种探杆形式可供选择。
图3 单杆探杆信号轨迹图、通州探杆信号轨迹图、同轴探杆实物图、通州探杆实物剖面图
那么,如何选用合适的探杆形式呢?首先,需要考虑探杆对温度和压力的耐受。其次,需要考虑电磁脉冲信号在探杆上传播的轨迹。
单式探杆(单杆、单缆)上信号轨迹呈逐步发散的状态。在信号的轨迹范围内,可能会产生干扰信号影响到液位的测量。典型的干扰信号有安装管嘴,以及容器内的焊缝、焊渣和结构件等。同轴探杆的信号则集中在同轴探杆内。同轴探杆的结构是中间有一根实心金属杆(通常直径为8mm),电磁脉冲信号在金属杆上传播;其外侧是一根金属套管(通常直径为22mm),金属套管作为金属杆的屏蔽层,起到屏蔽外部的干扰信号及集中信号的作用,以提高信号的灵敏度,便于测量介电常数较低的介质。因此,采用同轴探杆可以不用考虑安装位置及容器内结构对测量带来的影响,是理想的一种探杆形式。同轴探杆的限在于,其量程受限,通常为6m左右,以及高粘度介质所形成的“搭桥”现象。
那么是不是说使用导波雷达液位计测量低压加热器液位,只需考虑到以上两点就了呢?实际上,还需要结合电厂低压加热器实际工况中存在大量蒸汽的特点。一是要考虑蒸汽的侵蚀作用对于探杆和表头之间密封部分的材质选择和制作工艺的考验。见图3红圆圈部分。依据笔者经验,选择应用业绩多、历经实践考验的品牌是产品的有效保障。二是需要考虑蒸汽工况下,电磁脉冲信号的传播在蒸汽中被衰减的情况。通常,导波雷达的测量原理可用以下公式来表示:
L=D – C0.t/2
L=液位高度
D=容器高度
C0=真空中的光速
t=发射信号和反射信号的时间间隔
在蒸气工况中,实际的液位以 L真来表示,实际的信号传播速度用C真来表示;仪表测量出的液位以L测来表示,那么:
L真=D – C真.t/2
L测=D – C0.t/2
因为C真L测。依据导波雷达液位测量值来控制凝结水的高度,所造成的实际影响是凝结水位过高,致使低压加热器内部分传热管被淹没在凝结水下,热交换效率下降,给水端差增大。
图4 7×S蒸汽探杆结构剖面图
通过实际的观察数据和相关的文献资料信息,在低压加热器的工况条件下,C真和C0之间的差异在2%~5%之间。因为C真受到蒸汽温度、压力的影响而不断变化,所以仅从改变仪表系数的方面来进行C真的修正,还是不能很好满足对测量准确度的要求。
对于C真进行实时的补偿,是导波雷达在蒸汽工况下能完成准确测量的先决条件。笔者所使用的Mangetrol导波雷达液位计采用了专利的蒸汽探杆,用于实时的C真补偿,其补偿的工作原理如下:
在蒸气探杆中,距离表头下方125mm处安装有一个蒸汽目标(Steam Target),表头每秒会发送一个询问信号,该询问信号到蒸汽目标后被发射回表头的时间t问询被测量。此时,电磁脉冲信号在当前工况下的速度C真可以用以下公式准确计算出来:
C真=d/t问询,其中,d=125mm
获得C真后,导波雷达将以此值来进行真实液位值的计算,从而达到实时补偿的目的。
小结
综上所述,Magnetrol专利的蒸汽探杆,集成了同轴式、良好的蒸汽隔密封及实时蒸汽补偿的优势。同时,Magnetrol致力于同轴探杆的大规模推广,具有同轴探杆生产的规模优势,给电力行业用户带来了高性价比的产品。此外,Magnetrol专利的AURORA系列液位计,将磁翻板和导波雷达液位计集成为一体,提供了重要应用场合的现场和远传测量,减少了过程接口数量,避免了潜在泄露点,提高了使用维护的便利性。
工作频率100MHZ~1.8GHZ测量范围杆式、双杆式:0~6m重 复 性±3mm分 辨 率1mm采 样回波采样55次/s响应速度>0.2S(根据具体使用情况而定)输出信号4~20mA精 度<0.1%通讯接口HART通讯协议过程连接G1-1/2法兰DN50,DN80,DN100,DN150过程压力-1~40bar电 源24VDC(±10%),纹波电压:1Vpp耗 电 量max22.5mA环境条件温度-40℃~+80℃防护等级IP68防爆等级EXiaIICT6电缆入口2个M20×1.5(电缆直径5--9mm)
导波雷达液位计是一种用于测量液体或固体物料液位的仪器,广泛应用于石油、化工、食品、等多个行业。随着科技的不断进步,导波雷达液位计的技术也在不断更新和完善,能够满足不同用户的需求。在这篇文章中,我们将详细介绍导波雷达液位计的工作原理、应用领域及其定制化的重要性。
导波雷达液位计的工作原理基于电磁波的传播特性。该设备通过发射微波信号,信号在遇到液体或固体物料表面时,会发生反射,反射回来的信号被接收器接收。通过计算发射信号和接收信号之间的时间差,导波雷达液位计能够地测量出液位的高度。这一过程的核心在于波的传播速度和时间的计算,因此其测量精度受到多种因素的影响,如介质的介电常数、温度、压力等。
导波雷达液位计的测量范围广泛,能够适应不同介质的液位检测。它不仅可以用于水、油等液体的测量,也能在固体物料的测量中发挥作用。与传统的液位计相比,导波雷达液位计具有较强的抗干扰能力和性,能够有效应对蒸汽、泡沫、灰尘等对测量结果的干扰。
在实际应用中,导波雷达液位计的定制化显得尤为重要。由于不同的行业和应用场景对液位计的要求各不相同,定制化能够地满足用户的需求。例如,在化工行业中,液体的温度和压力变化较大,导波雷达液位计需要具备相应的耐高温和耐高压的能力。而在食品行业中,设备的材质和清洗方便性则是关键因素。
定制导波雷达液位计通常涉及以下几个方面:
1.测量范围的定制:根据具体的液位高度要求,定制合适的测量范围,以确保设备能够在实际工况下正常工作。
2.介质适应性的定制:不同的液体和固体物料具有不同的物理特性,定制时需要考虑介质的介电常数、黏度和温度等因素,以确保测量的准确性。
3.安装方式的定制:导波雷达液位计的安装方式可以根据现场条件进行调整,如立式、卧式等不同安装方式,以适应不同的储罐或容器。
4.输出信号的定制:根据用户的需求,导波雷达液位计可以提供不同类型的输出信号,如4-20mA模拟信号、RS485数字信号等,以便与用户的控制系统进行有效对接。
5.防护等级的定制:在一些环境下,如高温、高压、腐蚀等,导波雷达液位计的防护等级需要进行相应的定制,以设备的正常运行和使用寿命。
在进行导波雷达液位计的定制时,用户需要与生产厂商进行充分沟通,明确自身的需求和应用场景。通过详细的需求分析,厂商能够提供相应的技术方案和产品建议,确保交付的设备能够匹配用户的实际使用情况。
除了定制化外,导波雷达液位计的维护和保养也重要。虽然该设备的性较高,但定期的检查和维护能够有效延长其使用寿命。用户应定期对设备进行清洁,检查电缆连接是否牢固,确保信号传输正常。此外,定期进行校准也是测量精度的重要措施。
总结来说,导波雷达液位计作为一种的测量工具,凭借其高精度、抗干扰能力强等优点,广泛应用于各个行业。定制化的过程不仅能够满足用户的特定需求,还能提升设备的适应性和工作效率。在未来,随着科技的不断发展,导波雷达液位计的应用领域将进一步拓展,功能和性能也将不断提升,为各行各业提供更为和的液位测量解决方案。
GDGW53-IAYPBBAMA雷达液位计供应商
西克导波雷达液位计供应,SICK导波雷达液位计好
传感器可将此信号作为连续测量值(模拟值)
发送同时也可从中导出可自由定位的开关点(开关量输出)。
LFP Inox 采用符合 标准的材料以及 EHEDG 认的设计,
确保*的,并且可以随意清洗,
甚可以用于卫生要求zui高的应用。
它具备模块化连接系统,能够简单、灵活地安装于各类应用。凭
借出众的耐高温和耐高压,
LFP 在CIP 和 SIP 的环境下使用时也不受限制。
通过 IO-Link 与上位机进行通信,真正实现智能化。
用于卫生应用的液位传感器
西克导波雷达液位计供应,SICK导波雷达液位计好
探针可手动缩短,长度可达 4000 mm,Ra ≤ 0.8 μm
过程温度可高达 180 °C,过程压力可高达 16 bar
无论是连续液位测量、点式限位报警还是它们的组合,
SICK 为过程控制、存储及过溢保护任务提供多样化的解决方案。
根据安装环境、介质属性和环境条件的不同,
SICK 为您提供不同的理想选择,
这些不同的传感器有个共同的目标,那就是。
SICK 将其专有技术发挥,为您提供zui为多样化的产品选择。
种通过检测电磁波传播的时间差进行液位测量的方法,
通过发出及反射脉冲间的时间差生成液位信号。
互换的卫生过程连接
三合:集成显示、模拟量输出和开关量输出相结合