辽宁705-510A-110/7MR-A110-250导波雷达物位计
与其它物位技术的对比优势
相比超声波物位计,雷达技术不受温度梯度、真空环境影响,测量距离可达120米;较之射频导纳,其无机械运动部件,维护量减少90%;相对于激光物位计,雷达能穿透蒸汽和泡沫,且不受颜色反射率影响。在粉体测量中,80GHz雷达的精度比电容式高10倍,且无需定期标定。核子物位计虽有强穿透性,但存在辐射隐患,雷达方案更环保。某粮仓改造项目显示,替换机械重锤后,雷达物位计的故障率从年均15次降至0次,能耗降低95%。
产品简介
雷达物位计 FB8310雷达物位计
产品概述
FB8310系列传感器是雷达式物位测量仪表,测量距离***大35米,可以用于存储罐、中间缓冲罐或过程容器的物位测量,输出4~20mA模拟信号。
应用
采用的非接触式测量
采用其稳定的材料制造
测量液体、固体介质的物位
可以测量介电常数>1.8的介质
测量范围0~20m(可以扩展到35米)
采用两线制、回路供电的技术,供电电压和输出信号通过一根两芯电缆传输
4~20mA输出或数字型信号输出
分辨率1mm
不受噪音、蒸汽、粉尘、真空等工况影响
不受介质密度、粘稠度和温度的变化的影响
过程压力可达40bar
过程温度可达250℃
好的,我们来详细解释一下雷达物位计的工作原理,并尝试用文字描述其原理图解。
雷达物位计的核心工作原理是利用电磁波(通常为微波) 发射到被测物料表面并接收其回波,通过测量电磁波往返传播所需的时间来计算物料表面到天线(参考点)的距离,进而确定料位高度。
基本公式简单:
:光在空气中的速度 (约 3 * 10⁸ m/s)
:电磁波从天线发出到接收反射回波之间的时间差
:天线到物料表面的直线距离
:天线到罐底或零点(参考基准)的已知距离
:物料的实际高度 (料位)
信号发射: 变送器中的高频电子电路产生特定频率(如 6GHz, 26GHz, 80GHz K波段)的微波脉冲信号或连续波调频信号。
信号传播: 此微波信号通过天线(如喇叭天线、杆式天线、抛物面天线或导波缆/杆)向被测介质(液体、浆料、固体颗粒)的表面辐射发射出去。
信号反射: 当电磁波遇到介电常数(ε)明显不同于空气(或罐内气体)的物料表面时,根据物理学的反射定律,一部分能量会被反射回来。
介电常数越高(如导电液体、水溶液等),反射越强,信号越好。
介电常数越低(如干燥粉粒、泡沫、水蒸气),反射越弱,信号越差(需要更高频率或技术)。
信号接收: 同一个(或特定接收)天线接收到被物料表面反射回来的微弱回波信号。
信号处理: 这是关键的一步,电子处理单元将接收到的回波信号与发射信号进行比较和分析:
识别有效回波: 从接收到的信号(可能包括罐壁反射、内部结构反射、噪声等)中准确识别出物料表面的有效回波信号。
测量时间差 (Δt): 测量微波信号从发射到接收到有效回波所经过的时间 。
距离计算: 利用光速 和测得的 ,根据公式 计算出天线到物料表面的距离 。
物位计算: 结合预先设定或已知的罐体参考基准距离(从安装法兰/天线基准点到罐底或零点的距离 ),计算出物料的实际高度 。
输出信号: 将计算出的物位高度 转换成标准的工业控制信号(如 4-20 mA)或数字通信信号(如 HART, Profibus PA, Foundation Fieldbus),传输给显示仪表、控制系统或上位机。
想象一个侧面剖开的立式罐:
顶部: 罐顶安装着雷达物位计变送器头,它包含了发射器、接收器和信号处理器。
天线: 变送器下方连接着一个喇叭形天线(常见,用于非接触式),垂直向下延伸进入罐体空间。或者是从变送器延伸下来的一根导波缆或导波杆(用于导波雷达)。
罐体: 罐壁标有高度刻度。
罐底: 罐底标为参考点(零点)。
信号传输(非接触式):
从喇叭天线口向下发射出圆锥状的微波束(实线箭头)。
箭头尖端抵达物料表面(液体或固体)。
在物料表面处,一个向后的箭头代表回波反射,沿原路径返回喇叭天线。
在喇叭天线口和物料表面之间,清晰地标注出距离 。
在喇叭天线法兰(安装基准点)到罐底之间,清晰地标注出参考高度 。
物料表面到罐底的距离即为物位高度 。
信号传输(导波雷达):
如果使用导波雷达,则用实线表示导波缆/杆从变送器垂直伸入罐内,直达罐底附近。
微波信号沿着导波缆/杆表面向下传播(实线箭头沿杆)。
箭头在物料表面处标示。
在物料表面处,一个向后的箭头沿导波缆/杆向上,代表回波反射。
同样标出 , , 。区别是电磁波被约束在导波元件附近传播。
雷达物位计主要有两种实现ToF测量的技术:
脉冲式雷达:
发射固定频率的短脉冲微波信号。
直接测量发射脉冲与接收脉冲峰值之间的时间差 。
原理相对简单,成本较低。
需要强的回波以便检测峰值,在低介电常数或表面不稳定(波动/泡沫)时可能受限。
调频连续波雷达:
发射频率间线性变化(通常向上扫频)的连续微波信号。
在接收端,将当前发射的频率与被物料表面反射回来的频率(此信号在时间上有延迟,所以对应的是之前发射的较低频率)进行混频(差频)。
得到一个频率较低的差频信号(中频信号IF)。
这个中频信号的频率 与物料距离 成正比 ()。
测量中频频率 ,可以更地计算出距离 。
接收的是连续波能量,信噪比更高,抗干扰能力强,测量精度通常更高(尤其在近距离或复杂工况下),适用于低介电常数介质和存在泡沫的场合。但技术更复杂,成本通常更高。
非接触测量: 大多数(非导波)雷达不接触介质,适用于腐蚀性、粘稠、高压、高温等复杂工况。不受介质密度、压力、温度(本身)、气体组分(普通气体)影响。
抗干扰能力强: 电磁波穿透力强,能穿透泡沫、蒸汽和粉尘(粉尘过多时高频雷达效果)。
测量范围广: 从几米到上百米(导波雷达通常短距离更)。
高精度: 尤其FMCW雷达,精度可达±1mm。
安装相对简单: 只需预留安装法兰口。
维护量低: 无可动部件。
介质介电常数: 过低(<1.8)时,非接触雷达反射信号弱,测量困难。需选择高频雷达或改用导波雷达。
安装位置: 需避开进料口、搅拌器等干扰源。
天线结垢: 介质在喇叭天线上凝结或积料,会严重影响测量(尤其粉料)。需要选用防尘罩、天线(如平面天线、抛物面天线)或喷吹。
端泡沫层: 过厚过密的泡沫会吸收或散射信号。导波雷达或高频FMCW雷达通常表现。
测量盲区: 靠近天线附近一小段距离无法测量(约10-30cm,不同型号差异大)。安装时需确保料位高于盲区。
介电常数变化: 大幅度变化有时需要重新标定,但通常影响不大。
测量范围
精度要求
过程温度/压力
介质特性(液体、固体、颗粒大小、介电常数、粘附性、泡沫)
罐内安装环境(空间、蒸汽、粉尘、搅拌)
预算
雷达物位计利用微波信号的发射、传播、反射和接收,通过测量微波信号在空气中(或导波体上)往返物料表面的飞行时间,计算其距离,得出物位高度。它是一种、、非接触(大部分情况)的高精度物位测量方法,广泛应用于各种工业领域。脉冲雷达和FMCW雷达是实现这一基本ToF原理的不同技术路线,各有优劣。
希望这个详细的文字解释和原理图解描述能帮助你清晰地理解雷达物位计的工作原理!
雷达物位计原理专门针对固体物料仓(包括粉矿仓)物位测量难的问题自主研发的一款抗干扰强、工作稳定的调频雷达物位计。适用于仓内结构复杂(含有不可移除的障碍物)、仓内粉尘较多、物料反射弱等工况恶劣的现场。DF-6201雷达物位计各项均已达到了同类产品的*水平,在工况恶劣的现场测量效果更佳
雷达物位计原理采用调频连续波(FMCW)原理,利用发射信号与接收信号之间的频率差来确定目标距离。基于FMCW原理的雷达物位计连续处理回波信号,所以在物位测量的准确性、及时性以及稳定性效果更佳。根据多个现场的数据采集以及实验,我们制作了功能完善的数据处理算法,建立了的数学模型。可根据现场仓内的实际情况采集相应的数学模型,让雷达物位计更适应现场物位的测量。
产品特点
1、业内商品化X波段固体雷达物位计。X波段雷达兼顾穿透能力、抗*力、测量精度以及反射特性等综合性能,被广泛应用于世界范围内*的军事雷达技术中。大波束角检测技术的突破使该技术得以从以往的高精度液位测量领域拓展到高性能固体物位测量领域。
2、量程150m,盲区0米,精度5mm,重复性0.5mm,分辨率0.3mm。
3、具有标准料位、zui高料位、zui低料位、平均料位,智能料位共5种料位检测模式供用户选择,可对料仓位进行更全面的监测。
4、操作使用其便捷。可以通过红外遥控器、HART手持器、HART总线等手段对仪表进行本地及远程设置及调试,并有高度智能化的设置向导功能,引导用户在5分钟之内即可完成对仪表的参数设置。
四、性能
波束角:18°
量程: 150m
盲区: 0m
精度: ±5mm
重复性: 0.5mm
分辨率: 0.3mm
输出信号:4-20mA/HART,开关量输入或输出
电源:220V 50Hz
适应温度: -40~65℃
五、产品应用
广泛的用于工业中固体料位的测量。对于度粉尘及料仓内存在多种影响测量的干扰因素工况有很好的测量效果。
辽宁705-510A-110/7MR-A110-250导波雷达物位计
雷达物位计作为一种的非接触式物位测量仪表,其工作原理基于电磁波的传播和反射特性。
本文将详细介绍计为Rada-11雷达物位计的工作原理,包括发射雷达波束、波束与物体互作、检测反射波时间、计算物位高度、显示输出结果等方面,并探讨其在多种应用环境中的表现以及高测量准确度的特点。
Rada-11雷达物位计
一、发射雷达波束
计为Rada-11雷达物位计通过内置的发射器向目标物体发射高频雷达波束。
这些波束通常以脉冲或连续波的形式发射,具有特定的频率和波形。
发射的雷达波束在空间中传播,直到遇到目标物体。
二、波束与物体互作
当雷达波束遇到目标物体时,部分波束能量会被物体表面反射回来。
反射的波束能量取决于物体的材质、形状、大小以及表面特性等因素。
物体的不同特性会对反射波束产生不同的影响,这也是雷达物位计能够区分不同物体的关键。
当雷达波束遇到目标物体时,
部分波束能量会被物体表面反射回来
三、检测反射波时间
雷达物位计通过内置的接收器检测反射回来的波束。
接收器会记录从发射波束到接收反射波束的时间差。
这个时间差与雷达波束的传播速度(即光速)相乘,可以得到雷达波束与目标物体之间的距离。
四、计算物位高度
基于接收到的反射波时间,雷达物位计可以计算出目标物体的距离。
在物位测量中,这个距离即为物位高度。
通过一定的算法和数据处理,雷达物位计可以将这个距离转换为实际的物位高度值。
基于接收到的反射波时间,
雷达物位计可以计算出目标物体的距离
五、显示输出结果
雷达物位计通常配备有显示模块或通讯接口,用于将计算得到的物位高度值进行显示或输出。
用户可以通过显示模块直接查看当前的物位高度,也可以通过通讯接口将数输到上位机或控制系统进行进一步处理和分析。
六、多种应用环境
计为Rada-11雷达物位计凭借其的性能,适用于多种应用环境。
无论是室内还是室外,无论是液体还是固体物料,雷达物位计提供的物位测量解决方案。
同时,雷达物位计还具有一定的抗干扰能力,能够在复杂的电磁环境中正常工作。
Rada-11雷达物位计凭借其的性能,
适用于多种应用环境